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ABSTRACT 

This dissertation examines shared memory reference patterns in parallel programs that run on bus­

based, shared memory multiprocessors. The study reveals two distinct modes of sharing behavior. In 

sequen1ial sharing, a processor makes multiple, sequential writes to the words within a block, uninter­

rupted by accesses from other processors. Under fine-grain sharing, processors contend for these words, 

and the number of per-processor sequential writes is low. Whether a program exhibits sequential or 

fine-grain sharing affects several factors relating to multiprocessor performance: the accuracy of sharing 

models that predict cache coherency overhead, the cache miss ratio and bus utilization of parallel pro­

grams, and the choice of coherency protocol. 

An architecture-independent model of write sharing was developed, based on the inter-processor 

activity to write-shared data. The model was used to predict the relative coherency overhead of write­

invalidate and write-broadcast protocols. Architecturally detailed simulations validated the model for 

write-broadcasL Successive refinements, incorporating architecture-dependent parameters, most impor­

tantly cache block size, produced acceptable predictions for write-invalidate. Block size was crucial for 

modeling write-invalidate, because the pattern of memory references within a block determines protocol 

performance. 

The cache and bus behavior of parallel programs running under write-invalidate protocols was 

evaluated over various block and cache sizes. The analysis determined the effect of shared memory 

accesses on cache miss ratio and bus utilization by focusing on the sharing component of these metrics. 

The studies show that parallel programs incur substantially higher miss ratios and bus utilization than 

comparable uniprocessor programs. The sharing component of the metrics proportionally increases with 

cache and block size, and for some cache configurations determines both their magnitude and trend. 

Again, the amount of overhead depends on the memory reference pattern to the shared data. Programs 

that exhibit sequential sharing perform better than those whose sharing is fine-grain. 

A cross-protocol comparison provided empirical evidence of the performance loss caused by 

increasing block size in write-invalidate protocols and cache size in write-broadcasL It then measured 

the extent to which read broadcast improved write-invalidate performance and competitive snooping 

helped write-broadcasL The results indicated that read-broadcast reduced the number of invalidation 

misses, but at a high cost in processor lockout from the cache. The surprising net·effect was an increase 

in total execution cycles. Competitive snooping benefited only those programs that exhibited sequential 

sharing; both bus utilization and total execution time dropped moderately. For programs characterized by 

fine-grain sharing, competitive snooping degraded performance by causing a slight increase in these 
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1 Introduction 

1.1. Motivation for this Dissertation 

Shared memory multiprocessors are emerging as an important class of computer systems 

fHill86, Olso85,Rose85, Thac88, Thak88]. One of the goals of this architecture is to improve 

performance by executing a single, parallel program on multiple processors. The programs 

share data and communicate with one another through a common main memory. The primary 

advantage of the shared memory is that it furnishes the programmer with the simplest parallel 

programming model, that of a single-level of globally accessible memory.1 But because it is a 

single resource, used by all processors, it is a critical performance bottleneck. 

The simplest shared memory architecture is one in which all processors a..11.d main memory 

are connected via a single system bus. (Figure 1-1 depicts a bus-based, shared memory mul-

1 There are other advantages, of course. A major one is the ability to emulate other parallel processing memory 

organizations, such liS message p~sing architeCtures. 
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tiprocessor.) This bus is the only communication path from the processors to memory, and 

among the processors. Therefore it is even a greater point of contention than main memory. 

The bus bandwidth determines how many processors the bus can support. Queueing delays in 

reaching memory via the bus can substantially increase memory access time and therefore pro-

gram throughput. 

Processor caches reduce the bandwidth demands on the system bus and shared memory 

[Good87b] by providing a distributed version of the single, shared memory resource. However, 

since multiple processors can now update different copies of the shared data, an additional prob-

lem of keeping all the versions consistent is introduced. Cache coherency (consistency) proto-

Memory 

u 
I The System Bus j 

tt tt u 
Cache 1 Cache 2 0 0 0 Cache N 

Figure 1-1: Bus-based, Shared Memory Multiprocessor 

In a bus-based, shared memory multiprocessor all processor nodes and main memory are connected to a 

common system bus. This bus is the only hardware by which the processors may communicate with each 

other and with main memory. Therefore, despite the CPU caches, it is likely to cause the performance 

bottleneck. 
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cols describe operations for reading and writing shared memory that guarantee that a consistent 

view is maintained, i.e., a system with distributed caches behaves like one without them. 

Should multiple writes to a shared memory location occur simultaneously, it should be the case 

that (1) a value received on a memory read is the update of the last write to that location, and 

(2) the behavior of the coherency protocol is always predictable, i.e., no race conditions exist. 

Numerous coherency protocols have been developed, both in hardware and software. 

Many were designed to provide good perfozmance, usually meaning minimal additional bus 

traffic, under particular sharing conditions. For example, the goal of the write-broadcast proto­

cols was to generate few additional bus operations when multiple processors were actively con­

tending for the same shared addresses. Models of multiprocessor activity were also constructed 

to study the perfozmance of several of the protocols. 

All coherency protocols and multiprocessor models were developed in the absence of any 

real knowledge about the sharing behavior of parallel programs. Individual protocol optimiza­

tions were made, based solely on hypothetical assumptions of the sharing activity of these pro­

grams. The multiprocessor modeling was based on a workload model in which memory 

accesses to write-shared data were independent and unifozmly distributed across all processors. 

If parallel program behavior deviates from the assumed behavior, then modeling results will 

mislead machine designers, and protocols will be adopted that produce less than optimal perfor­

mance in actual machines. 

The research in this dissertation takes the opposite approach. The tnitial goal of the work 

was to study the sharing behavior of parallel programs. Beginning with an analysis of actual 

program behavior has two benefits. First, it provides an understanding and char .::terization of 

the patterns of sharing before making a judgement about protocol and multiprocessor cache 

design. Second, the analysis of sharir.g is based on a real, rather than hypothetical workload, so 
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that the results are more representative of actual machine behavior.2 

In some cases the results I shall present contradict previous conclusions about the merits 

of individual protocols and optimal cache organizations for multiprocessors. For example, con-

ventional wisdom postulated that per-processor locality of reference for shared data was low 

[Arch86, Dubo82, Sega84, Vem86], and that any sharing in parallel programs would be charac-

terized by inter-processor contention for shared blocks. Therefore, among the distributed, 

hardware protocols, it was predicted that write-broadcast protocols, which behave well under 

periods of contention, would have the least coherency-related bus traffic. And conversely, 

write-invalidate schemes would perform less well, presumably because of repeated misses on 

invalidated data. Results in this dissertation clearly demonstrate that there is a wider spectrum 

of sharing behavior in parallel programs than was assumed. Some programs do exhibit t.ne 

hypothesized contention for shared addresses. However, others access blocks in a more sequen-

tial fashion, with one processor completing several accesses before another references the data. 

In other words, for many parallel programs there is good per-processor locality for shared data. 

For these programs, write-invalidate protocols are the better match; they generate both fewer 

cache misses and less bus traffic than write-broadcast. 

Similar conclusions were made about the optimal cache block size for multiprocessor 

caches [Good83, Papa85, Sega84, Thac88, Vern86], the merits of read-broadcast protocols 

[Good87a, Sega84] and the insignificant effect of processor lockout from the cache on the 

overall performance of the snoopi.."1g protocols. (The latter is inferred from the ~ole emphasis on 

minimizing bus traffic [Good83, .Katz85, Papa85, Sega84, Thac88].) In all cases, results in this 

dissertation show that the inaccurate or simplified assumptions about the sharing behavior of the 

workload led to misleading or inaccurate results. 

2 ~ in all experimental research. the results are based on a finite amount of data, in this case traces of parallel 

programs. A different workload, for example, a larger number of programs, or a different application area, may pro­

duce dissimilar results. 
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Because of the presumption of poor locality of reference of shared data, it was postulated 

that large block sizes, a factor in obtaining good uniprocessor performance, would lower perfor-

mance for parallel programs. My results show that for programs with sequential sharing, a large 

block size improves performance. In actuality, the optimal block size depends on the pattern of 

sharing within the cache block, in particular, whether it is sequential or fine-grain, rather than 

following a "the smaller, the better" rule. 

Read-broadcast protocols allow caches that had previously invalidated data to refill their 

caches while the data is being bus transferred on another processor's read. The technique is 

considered to be a performance optimization, because it avoids all misses on invalidated data 

after the first. Results in this dissertation have found that, while read-broadcast does, in fact, 

reduce bus traffic, it can cause a loss in program throughput because it locks the processor from 

its cache. For some types of sharing behavior, protocols that increase processor lockout from 

the cache in order to reduce bus traffic can have worse overall perfonnance than those that make 

the alternative tradeoff. 

1.2. Organization of the Dissertation 

The remainder of !.he dissertation is organized as follows. Chapter 2 contains a review of 

the coherency protocol literature. The review provides the reader with a summary of all 

coherency approaches, their advantages and drawbacks, and their distinctions from each other. 

While most of the protocols are not explicitly studied in the dissertation, the review provides a 

context for the development of those that are, namely, the write-invalidate and write-broadcast 

protocols.3 Chapter 2 also contains a critique of published coherency protocol perfonnance stu-

dies, based on analytic modeling and parameterized simulation. 

3 All terms will be defined and referenced where first discussed in detail. 
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Chapter 3 is a discussion of the methodology used in the dissenation research. All studies 

were done by trace-driven simulation of four parallel programs. Traditional trace-driven simu­

lation techniques had to be extended in several ways to accommodate parallel processing 

requirements. For example, the traces had to be postprocessed to identify shared variables and 

inter-processor synchronization points. The resulting postprocessed traces were then too large 

for conventional disk storage; therefore a cache filter, specially cesigned for traces of parallel 

programs, was developed to compress them. Debugging the multiprocessor simulator was more 

difficult than developing uniprocessor simulators, because of the asynchronous nature of gen­

erating and satisfying global memory requests. Techniques were developed to trap system-wide 

debugging errors as they occurred dynamically, to prevent the incorrect actions of one processor 

from perturbing the behavior of others. 

Chapter 4 develops a model of sharing that is used to detennine the pattern of memory 

references to shared data, and the relative perfonnance of write-invalidate and write-broadcast 

coherency protocols. There are three components to the development. The first characterizes 

those aspects of sharing that are important in measuring bus-related coherency overnead and 

defines metrics to reflect the characterization. Second, the characterization becomes the basis 

for an architecture-inciependent version of the model. Comparisons to simulation results verify 

this model's accuracy for the write-broadcast protocols. Finally, by progressively refining the 

moctel by incorporating specific cache parameters, most importantly, the size of the cache block, 

the model becomes a good predictor of coherency overnead for write-invalidate protocols as 

well. 

The model development revealed two distinct modes of sharing behavior in the programs. 

In the first, sequential sharing, a particular processor makes multiple, sequential writes to the 

words within a block, uninterrupted by accesses from other processors. In the other, fine-grain 

sharing, processors contend for one or more words within the block and the number of per­

processor sequential writes is very low. The results demonstrate that whether a program 
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exhibits sequential or fine-grain sharing affects the amount of coherency overhead incurred 

under a particular protocol, and with a panicular block size. 

Chapter 5 evaluates the cache and bus behavior of parallel programs under write­

invalidate protocols over various block and cache sizes. The analysis determines the effect of 

shared memory accesses on both cache miss ratio and bus utilization by focusing on the sharing 

component of these metrics. The studies show that parallel programs incur substantially higher 

miss ratios and bus utilization than comparable uniprocessor programs. The sharing component 

of the metrics proportionally increases with both cache and block size, and for some cache 

configurations determines both their magnitude and trend. Again, the amount of overhead 

depends on the memory reference pattern to the shared data. Programs that exhibit sequential 

sharing perform better than those with fine-grain sharing. This suggests that writers of parallel 

software, in conjunction with better compiler technology, can improve program performance 

through better memory organization of shared data. 

Both write-invalidate and write-broadcast protocols have been criticized for being unable 

to achieve good bus performance across all cache configurations. In particular, write-invalidate 

p;;:-formance can suffer as block size increases; and large cache sizes will hurt write-broadcast. 

Read-broadcast and competitive snooping extensions to the protocols have been proposed to 

solve each problem. Chapter 6 provides empirical evidence of the performance loss caused by 

increasing the block size in write-invalidate protocols and the cache size in write-broadcast. It 

then measures the extent to which the solutions improve performance. 

The results indicate that their benefits are limited. Read-broadcast reduces the number of 

invalidation misses, but at a high cost in processor lockout from its cache. The net effect can be 

an increase in total execution cycles. The competitive snooping protocol benefits only those 

programs whose memory reference pattern to shared data is one of sequential sharing. For pro­

grams characterized by inter-processor contention for shared addresses, competitive snooping 
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can degrade perfonnance by causing a slight increase in bus utilization and total execution time. 

The dissertation concludes in Chapter 7 with a summary of the research results, a discus­

sion of the importance of the pattern of shared references in determining parallel program 

behavior and an outline of future research directions. 

1.3. Research Contributions 

Research contributions have come from both the research methodology and the results 

themselves. First, when the research was begun, there were no parallel traces available for 

analysis. The collection of multiprocessor traces that were generated for these studies have 

become one of two available to the research community. Second, analysis of the traces led to 

the development of a postprocessing methodology for synchronizing inter-processor memory 

references and a specialized cache filter for compressing traces of parallel programs. 

The remaining contributions relate to the dissertation results themselves. A model of 

sharing, that incorporates per-processor locality of reference to shared data. was developed. Its 

purpose was to determine a program's pattern of sharing and the cost of maintaining coherent 

caches for write-broadcast and write-invalidate protocols. Although the model is quite simple, 

it was validated for both protocols via trace-driven simulation. 

An analysis of cache memory design for multiprocessor caches was done over a wide 

range of cache and block sizes. The results pinpoint the additional cache misses and bus traffic 

incurred by parallel programs, and the cache configurations required to support varying levels 

of perfonnance. 

The analysis of cache coherency protocols revealed which design options produced the 

better perfonnance and under what types of workloads and particular cache configurations. 

Fmally, and perhaps most importantly, the research highlighted the importance of sequen­

tial sharing behavior for minimizing coherency overhead and building accurate models of shar-
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ing. The results were dramatic enough to warrant pursuing the development of prog'"3IIllller 

and/or compiler techniques to deliberately construct parallel programs that share sequentially. 
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2.1. Introduction 

The Cache Coherency 

Protocols 

11 

Cache coherency protocols have been implemented both in software and hardware. In the 

software protocols the programmer must identify all potentially shared objects, and for some 

protocols the coherency operations as well, so that the operating system or compiler car1 take 

appropriate steps (described below) to preserve consistency. For the simpler schemes the over­

head of maintaining consistency is incurred whether or not sharing actually takes place during 

program execution. Recent advances in software protocols employ the automatic (compiler) 

detection of the read/write pattern of shared data to reduce this overhead. 

Hardware solutions free the programmer and compiler from the responsibility of specify­

ing coherency operations for the shared strJctures, and some incur the performance cost of 

preserving ccherency only when the blocks are actively shared. These benefits occur at some 

cost in the hardware complexity of the cache and/or memory controller. The control of the 
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hardware protocols can either be centralized at the memory controller, using a global state 

directory, or be distributed among the caches and employ a snoop to track shared addresses. 

A survey of all published protocols follows. Although only two classes of protocols, the 

write-invalidate and write-broadcast protocols, will be used in the studies in Chapters 4 through 

6, I include a brief but comprehensive survey to provide a context for their development. The 

purpose of the survey is to (1) classify all coherency approaches and place particular protocols 

into the classification; (2) pinpoint the main advantages and drawbacks of the various coherency 

techniques; and (3) elucidate the most important distinctions between them. The reader is urged 

to consult the references at the end of this chapter for more details on particular protocols. 

2.2. The Software Protocols 

The programmer-controlled mechanisms used by the software protocols to enforce 

coherency are noncacheable pages, synchronization and cache flushing after critical sections. 

Declaring a page "noncacheable" forces all references to the page to access memory, thereby 

avoiding coherency problems altogether. The cost is an increase in bus traffic and slower exe­

cution, caused by the need to access memory on each shared data reference. Noncacheable 

pages are implemented by hardware that checks a cacheability bit in the appropriate page table 

entry during cache miss processing. If the bit is set, the block being referenced is passed 

directly to the CPU; if cleared, the block is cached. Noncacheable pages are used on the ELXSI 

6400 [McGr86, Olso85], the Honeywell 60/66 [Saty80], the NYU Ultracomputer [Edle85], 

IBM's RP3 (which has also implemented temporarily cacheable pages) [Bran85, Pfis85], the 

Intergraph Oipper [Neff86] and CMU's C.mmp [Full78]. 

An alternative approach requires a processor to access shared data via critical sections 

protected by semaphores. The processor first sets the lock, then references the data (caching it), 

and flushes the cache and releases the lock when finished. Normally the granularity of sharing 

is the page (segments are also used), and therefore only the shared pages need to be flushed, 
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rather than the entire cache. In the ELXSI 6400 semaphores are obtained and the buffer for the 

shared data is allocated through programmer-inserted operating systems calls. Since their 

accepted programming convention allows for reading shared data without locking it, the cache 

is flushed on lock as well as release. 

Many systems, for example, the ELXSI 6400 and RP3, use a combination of the two 

mechanisms: noncacheable pages for storing the semaphores, and critical sections for the appli-

cations shared data. In RP3 the semaphores are counters, and may be maintained either by 

hardware or by busywaiting in software. 

Early software protocols relied on programmer-specification of cacheable or noncacheable 

data. More recent schemes use the compiler both to automatically detect potential coherency 

violations and to prevent them by inserting either bypass-cache, or cache flush, invalidation or 

"post" instructions. The compiler separates a program into units, often delineated by loop boun-

daries, that are intended to be executed in parallel The protocols differ in their treatment of 

shared data within each unit In [Veid86] shared variables are cached, depending on the type of 

loop (doall is cached, doacross is not1); and, if cached, the entire cache is invalidated (called 

indiscriminate invalidation) after the unit has been executed, to prevent local reuse of the data. 

The coherency overhead is therefore a function of the loop type and bounds, rather than the 

number of processors or shared writes. In two other schemes the cacheable/noncacheable dis-

tinction is based on shared data usage. Shared variables are cacheable, if there are multiple 

readers and eirher no writing processors [Lee87] or only one writer (RP3 ~d the Ultracomputer 

[Bran85]). At the end of the unit's execution the [Lee87] scheme indiscriminately flushes the 

cache, allowing a copy-back memory update policy. The RP3 and Ultracomputer have a write-

1 The type of loop is determined by the (data) dependence graph of the statements contained in iL Doallloops 

do not contain any cross-iteration data dependencies; therefore their iterations can b.! executed concurrently on multi­

ple processors and their shared data can be cacned. Doacross loops contain at least one cross-iteration dependency. 

Tills limits the concurrent execution of their iterations to a pipe lined fashion. and shared data cannot be cached. The 

next iteration can be scheduled (on a different processor) after the the statements that contain the cross-iteration 

dependencies have been e:r.:ecut.ed. 
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through policy; therefore their protocol can selectively invalidate (but in a single cycle) only the 

shared variables. (Write-through was used in RP3 and the Ultracomputer, because the burst of 

bus traffic caused by a cache flush caused more network delay in their multistage interconnec­

tion network than a steady, larger stream of write-through data [Edle85].) 

The scheme proposed by Smith [Smit85] is a hardware optimization of the Ultracomputer 

protocol. In this protocol One Time Identifiers are associated with each cache block and with 

each page in the Translation Lookaside Buffer. A cache hit is determined by a comparison 

between the cache identifier and the cache address tag and the TLB identifier and the address of 

the memory reference. When the value of the TLB identifier is changed, the blocks on a partic­

ular page no longer hit, and the data becomes inaccessible. One Time Identifiers eliminate the 

need to invalidate the cache one block at a time, but have the disadvantages that (1) the granu­

larity of shared objects is tied to the page and (2) reloading a replaced 1LB entry will cause 

cache misses to its valid cache entries [Cheo88]. 

The three compiler-based protocols ([Bran85, Lee87, Veid86]) are conservative 

approaches; they specify invalidations or flushing for all shared data usage, whether it is dynam­

ically required or not. Two other software protocols ([Cheo88, Cytr88]) were developed 

specifically to improve upon these earlier schemes by eliminating unnecessary coherency opera­

tions. They achieved this at the cost of an increase in the amount of compiler analysis required, 

and, for one, some hardware assist in the cache controller. [Cheo88] approximates constant-

time, but selective invalidations, through reference marking2 by source-speciftc (memory or 

cache) reads of shared data and invalidation bits associated with each cache block. A bit is set 

when the whole cache is invalidated (indiscriminately, in constant time), and cleared when its 

block is reloaded. The selectivity is accomplished by the dual reads. The cache-read instruc­

tion always reads from the cache (whether the bit is set or not, ignoring the invalidation); it is 

2 Reference marking tags each data reference as cacheable or noncacheable. 
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used when the compiler can guarantee that the cached data is current Its memory-read counter­

part reads from memory if the data is stale (the invalidation bit has been set) and otherwise from 

the cache; it is used when the compiler cannot tell the exact order in which references will be 

satisfied because of execution-time code scheduling on multiple processors. [Cytr88] obtains 

the same accuracy, but without hardware assists. In addition to the flush and invalidate instruc­

tions, their protocol uses a "post" instruction, which writes data to memory, but omits the 

invalidation. This allows the writing processor to continue referencing updated data in its 

cache, and any readers to obtain the most current value. The authors are concerned with apply­

ing their technique to automatically parallelized sequential programs. Their analysis takes 

advantage of the data and control dependency information generated by their parallelizing com­

piler (PTRAN [Alle88]) in order to generate as few coherency-related operations as possible. 

For example, the compiler only places invalidations in execution .paths that contain a variable 

assignment, and only inserts posts after a processor's last assignment to a variable. 

The advantages of the software schemes are that (1) unlike most distributed, hardware 

protocols, they don't require the broadcast capabilities of a shared bus, i.e .• they are appropriate 

for more complex interconnection networks; (2) they avoid the runtime communication costs of 

the centralized hardware schemes that can operate on interconnection networks; and (3) they 

require little or no hariware support However, they have several drawbacks. First the sim­

plest schemes place the burden of specifying the shared structures and the synchronization 

needed to handle them, and of debugging this code on the programmer. Secondly, software 

protocols require that sharing take place via memory, i.e., they preclude sharing through the 

cache-to-cache transfer mechanism of some of the distributed, hardware schemes (described 

below), which can reduce bus traffic. Lastly, and most importantly, the source level 

specification results in compiler generated (static) mechanisms for coherency enforcement The 

compile time solution causes bus traffic to be generated whether it is required by the actual 
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Software Protocol Summarv 
,, 

Protocol Caching_ Policy Flush Policv Flush Determinant 

ELXSI 6400 data type selective critical section 

Clipper never 
Honeywell60/66 never 
NYU Ultracomputer processor usage selective program unit 

IBMRP3 data type, proces- selective program unit 

sor usage 

CMUC.mmp never 
[Veid86] loop type indiscriminate program unit 

[Lee87] processor usage indiscriminate program unit 

One Time Identifiers unspecified selective unspecified 
(presumably pro-
gram unit) 

[Cheo88] data type selective data dependency 
analysis 

[Cytr88] data type (presum- selective data/control 

ably) dependency 
analvsis 

Table 2-1: Software Coherency Protocol Summary 

This table contains a summary of the key differences among the software coherency protocols. The 

column, Protocol, contains either a coherency technique or the machine on which a particular coherency 

policy was implemented. Caching Policy specifies the criteria for allowing write-shared data to be 

cached. "Never" indicates that all write-shared data is noncacheable; "data type" that applications shared 

data is cacheable but locks are not; "processor usage" that cacheability depends on the number of readers 

and writers; and "loop type" that doall variables are cacheable but doacross are not A "selective" Flush 

Policy flushes only a portion of the cache (the exact portion is dependent on the protocol); an "indiscrim­

inate" one flushes the entire cache. Flush Determinant specifies when the flush is carried out. "Critical 

section" indicates on termination of a critical section; "program unit", on termination of some other 

compiler-determined unit of the program; "data dependency analysis" that flushing depends on the data 

dependency graph for the shared variables; "control dependency analysis" that it is determined by the ex­

ecution path taken. The latter two approaches are also compiler-generated. 

memory reference pattern to the shared data or not. The traffic appears in the form of memory 

accesses for noncacheable data, cache flushing after critical sections or program units and 

misses for data that have been needlessly flushed. (The latter is particularly expensive with the 

indiscriminate techniques.) Even the schemes that rely on the compiler detection of coherency 

violations suffer from this overhead. Within this group, the protocols that utilize reference 

marking, augmented by either hardware assists or data and control dependency analysis, should 
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achieve the best performance. It is still undemonstrated just how close to actual dynan1ic per­

formance these protocols can come. (A classification summary of the software protocols 

appears in Table 2-1.) 

2.3. The Centralized Hardware Protocols 

The first hardware cache coherency protocols had a centralized controller that was respon­

sible for maintaining consistency in all caches in the system. Cache transactions that could 

affect data coherency emanated from this central controller and were reported to it by individual 

caches. This included not only cache misses, but also those transactions that involved a change 

of cache state, even when there was no transfer of data. Each cache notified the central con­

troller of any state change to a cached block, such as an update of a clean block. The controller 

signaled the change to all other interested caches, in this case a directive to invalidate their 

copy, and then transmitted permission to the requesting cache to modify the block. The central 

controller also initiated all copy-backs before a read of dirty (private) data. 

Cache directories associated with each cache contained state bits for each block in the 

cache that determined whether there was a cache hit and whether a processor had permission to 

write to the block. In addition, the central controller maintained a global directory that was 

used in satisfying cache misses and enforcing coherency. The organization and content of the 

global directory depended on the particular coherency protocol. In the first of the centralized 

schemes developed, that of Tang [Tang76] (later implemented on the IBM 3081 [Gust82]), the 

cache directories were duplicated in the central directory. The drawback of this design was the 

global directory search required to locate all instances of a particular memory block. To elim­

inate the search time, other schemes maintained state that was associated with memory rather 

than cache blocks. The protocol developed by Censier and Fautrier [Cens78], the LSCS (Logi­

cal Semi-Critical Section) protocol of Yen and Fu [Yen82] and the protocol implemented in the 

S 1 [Widd80] tagged each block in main memory with a presence bit for each processor in the 
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system (to indicate that the memory block was contained in a particular cache), and a modified 

bit (to indicate that a cached copy had been updated). These schemes eliminated the directory 

search of Tang's protocol, but tied the size of the global directory to the potentially cacheable 

blocks in main memory and limited the number of processors to the number of presence bits. 

Therefore they did not scale well with increasing memory sizes or numbers of processors. 

Three other protocols eliminated the latter drawback. The Two-Bit scheme of Archibald and 

Baer [Arch84] improved on the Censier and Fautrier design by storing only the cache state for 

each memory block. The number of bits per memory block was thus independent of the number 

of processors in the system. This variation reduced the amount of memory devoted to the glo-

bal directory and allowed the number of processors to be expandable. Its drawback was that it 

was not known globally which cache held which block, and therefore all caches had to be polled 

to see which should invalidate on a write. Dir1NB and Dir1B
3 [Agar88b] distribute the global 

directory and its operations among the caches. Both schemes limit the presence bits, and there-

fore the caches that can contain a block, to one. (The "presense bit" is actually a pointer to the 

appropriate cache.) They will perform well only if data is shared in a very sequential nature, 

with one processor accessing it at a time. Dir1B is an optimization of Dir1NB; it provides one 

additional bit to indicate that there are multiple shared copies. When this bit is set, the 

coherency operation is broadcast, rather than sent point to point (A summary of the centralized 

protocols appears in Table 2-2.) 

Like the software protocols, the centralized schemes are well suited for complex intercon-

nection networks, i.e., multiple paths to memory. In addition, their sequential operation is 

easier to design and debug. However, several disadvantages make them u...~table for mul-

tiprocessors that utilize a single path (and therefore broadcast-based) interconnect, such as a 

bus. The most serious drawback is their adverse effect on bus utilization, caused by the need 

3 Their notation indicates that only 1 cached copy is allowed, and that bus broadcasts cannot (NB) or can (B) be 

used to determine which cache contams the data.. 
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Centralized Coherency Protocol Summa I}'_ 

Central Directory Or~anization Protocol 

State of all caches Tang 

State per memory block Censier & Fautrier 

Presence bit per processor LSCS 
Sl 

Processor id per memory block Dir1NB 

Processor id + broadcast bit per memory block Dir,B 

Table 2-2: Centralized Coherency Protocol Summary 

This table contains a summary of the key features of the centalized coherency protocols. 

for separate communication between the central controller and each cache. Tilis overhead is 

directly proportional to the nwnber of caches that share the data. Second, additional overhead 

also results from the memory update of cached dirty data before it is shared. Tilird, the global 

directory may need to be changed even when the action involves a single cache, for example, 

signaling the central controller when a clean block is replaced. Other disadvantages are the ina-

bility to allow for processor expansion (with the exception of the Two-Bit, Dir1NB and Dir1B 

schemes), the extra memory needed for the global directory and the time consumed by search-

ing it (Tang). 

2.4. The Distributed Hardware Protocols 

2.4.1. Overview 

When the interconnection between processors and memory is a single bus, the generality 

of the centralized coherency protocols may no longer be necessary. With multipl!!-cache data 

sharing, the one-to-one communication between the global and cache directories generates an 

amount of bus traffic that would quickly consume all available bus bandwidth. On the other 

hand, the broadcast capability of the shared bus provides simultaneous transmission of informa-
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tion to all processors. This feature led to a distributed approach to cache coherency. Under dis­

tributed coherency protocols, the responsibility for maintaining consistent caches belongs to the 

individual cache controllers rather than to a central controller, and the need to maintain a global 

directory is eliminated. Consequently, the number of processors can be extended to the limit of 

the bus bandwidth. 

In distributed coherency protocols a portion of each cache controller, the snoop, continu­

ously monitors the system bus for operations taking place on blocks contained in its cache. 

When a match is made between the address of the bus operation and one of the cache tags, the 

snoop performs a consistency-preserving operation, based on the type of bus request, the state 

of the cache block and, of course, the panicular protocol. For example, if the bus request is a 

write and the cache block state indicates that the block is shared, for several of the distributed 

protocols, the snoop will invalidate its cache entry. Within the distributed, hardware category, 

all protocols follow one of two approaches to maintaining coherency: write-invalidate or write­

broadcast (Again, a summary for the distributed, hardware protocols appears in Table 2-3.) 

2.4.2. The Write-Invalidate Protocols 

Write-invalidate protocols maintain coherency by requiring a writing processor to invali­

date all other cached copies of the data before updating its own. It can then perform the current 

update, and subsequent updates (provided there are no intervening accesses by other processors) 

without either violating coherency or further utilizing the bus. The invalidation is accomplished 

by an invalidating bus operation. Caches of other processors monitor the bus via the snoop por­

tion of their cache controllers. 'When they detect an address match, they invalidate the entire 

cache block containing the address. Because they create a data writer t...~at can access a shared 

block without using the bus, write-invalidate protocols should minimize the ov~rhead of main­

taining cache coherency in two cases: when there are multiple consecutive writes to a block by 

a single processor, and when there is little contention for the shared data. 



Protocol 
Write-Through 
with Invalidation 
Write Once 
Synapse N+l 

Berkeley Owner­
ship 
illinois 
RWB 
Bitar 

YMP 

Firefly 

Dragon 

Competitive 
Snooping 

Clipper 

Distributed Coherencv Protocol Summarv 

Catezory Memory_ Uooate Policy Uni_que Feature 

WI Write-through 

WI 
WI 

WI 

WI 
WI 
WI 

WI 

WB 

WB 

WB&WI 

WB 

Copy back 
Copyback 

Copyback 

Copyback 
Copy back 
Copy back 

Copy back 

Copyback for private, 
Write-Through for 
shared data 
Copyback for private, 
Write-Through for 
shared data 
Copyback for private, 
Write-Through for 
shared data, Copyback 
aftertheinvalidation 
Depends on cache state 

Reserved state 
Explicit memory owner­
ship 
Owned Shared state 

Private Oean state 
Read Broadcast 
Got-Lock & Need-Lock 
state 
Software implementation 
(interrupt-driven) 
Unlocked bus operation 
Memory updated with 
broadcast 

Memory not updated with 
broadcast 

Switches coherency policy 

Snoops on shared bus 
operations only 

Table 2-3: Summary of the Distributed, Hardware Coherency Protocols 
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This table contains a summary of the key features of the distributed, hardware coherency protocols. WI 

indicates that the protocol is one of the write-invalidate protocols; \VB that is write-broadcast. 

The simplest write-invalidate protocol is Write-Through with ln'lalidation, which has 

been implemented on dual processor machines4 (ffiM 370/168 [Saty80], mM 3033 [Smit85] 

and the VAX 11n80 [Arch84]) and more recently shared memory multiprocessors (th~ Sequent 

Balance 8000 [Thak88] and Encore Multimax [Be1185]). Under this protocol each write to the 

4 One processor was dedicated to IIO operations. 
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cache is propagated through to main memory. s As usual, other cache controllers snoop on the 

addresses of the writes and invalidate their copies if there is a match with their own cache tags. 

The addresses are broadcast on a special high speed bus on the IBM machines, while the system 

bus is used in the Sequent and Encore. The major drawback of Write-Through with Invalida-

tion is the amount of bus traffic generated by the writes. It forces the coherency-related bus 

traffic (as well as bus traffic for private data) to be a direct function of the number of writes, 

rather than of the amount of sharing. 

The other write-invalidate protocols follow a copy-back policy for updating memory. At 

a minimum, these protocols use the normal read and write bus operations and three state values 

(invalid, read only and possibly shared, and exclusively held and therefore writable) to guaran-

tee consistency in the caches (Arch84]. For reasons of bus efficiency, most introduce a unique 

fourth state and some have special bus operations. These additional features are used to 

improve bus utilization when detecting and handling shared data. For example, an invalidation 

signal is used by a writing processor to invalidate other cached copies of the block being 

updated; the clean, private state is used to eliminate the need for issuing this invalidation signal 

on the first write to an exclusively held block. 

The first of the copy-back, write-invalidate protocols to appear in the literature was \Vrite 

Once (Good83]. (Since there is only one write-through protocol, Write-Through with Invalida-

tion, from now on the term, "write-invalidate protocol", will refer to the copy-back subset) 

Write Once employs write-through on the first write to a block (during which all snoops invali-

date their copies, and u'le updated block's state is changed to Reserved) and copy-back on all 

subsequent writes (unw a read b~· another processor). It provides for cache-to-cache transfers 

for requests for cached diny data, but requires a subsequent memory update to cleanse the 

~Write-Through with Invalidation is unlike other write-invalidate protocols, because its write-through memory 

update policy precludes taking advantage of private copies of shared data on cache updates. I am including it in the 

write-invalidate category, because it utilizes invalidaticn signals to mainUiin coherency. 
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cached copies.6 Thus it incurs additional bus traffic over ciher protocols in two situations: over 

those protocols that never rely on write-through for multiple writes to cached blocks (by a sin­

gle processor) [Katz85] and over those that either update memory during a cache-to-cache 

transfer or only on block replacement for shared writable data. 

The Synapse N+ 1 developed a different protocol, based on the concept of block ownership 

[Fran84a, Fran84b]. Both memory and snoops could be explicit owners of blocks, and therefore 

directories were associated with each. Ownership by a cache (i.e., private ownership) carried 

the right to update the block locally without initiating a bus transfer and the obligations both to 

update main memory on block replacement and to provide data to other caches upon request. 

Obtaining private ownership involved a bus transaction that caused other caches to invalidate 

their copies of the block. The protocol avoids the extra bus operation to memory incurred by 

Write Once for write requests that result in cache-to-cache transfers of dirty data, but pays a 

stiff three transaction penalty for reads (the bus operation is aborted, main memory is updated, 

and the bus operation is then retried). 

The Berkeley Ownership protocol [Borr85, Katz85], developed for the SPUR multiproces­

sor [Hi1186], improved upon the Synapse scheme by eliminating both the three bus transaction 

overhead on reads that were satisfied by a cache and the state directory associated with memory. 

All transfers between caches are done in one bus transfer, and memory is not updated in the pro­

cess. The notion of shared, but still owned and possibly dirty, data is preserved by the introduc­

tion of the Owned Shared state. If no cache owns a block, then memory is considered the impli­

cit owner, thus eliminating the need to explicitly represent memory ownership with additional 

state. (See Chapter 4, section 2 for a more detailed description.) 

The Illinois protocol [Papa85] introduced the clean, private state to distributed protocols. 

The use of this state eliminates the need to signal a bus invalid~tion when it is known that the 

6 Memory must be updated because there is no cache state value denoting "'shared, dirty"" data. 
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processor has the only cached copy of the block.7 It thus reduces bus traffic to the numh~r of 

cache misses, invalidations when the data is thought to be shared and writes to memory on 

block replacement. The clean, private state was used in lieu of the owned states. The lack of a 

block owner means that any snoop that has a copy of a particular block might respond to a read 

request. This requires either (1) an implementation that will guarantee that all snoops can 

respond in the same bus cycle, or (2) extra processing time and/or logic to arbitrate for the mul-

tiple snoop/memory responses and lo retract the bus requests for the losers. In the implementa-

tion proposed for this protocol, memory was updated during a processor request for dirty data. 

The simultaneous update reduces the number of bus transfers for block replacement below that 

incurred in Write Once, Synapse and Berkeley Ownership, but requires a custom-designed 

snooping memory controller to prevent memory latency from dominating the time of the data 

transfer. (An almost identical protocol has been implemented on the Sequent Symmetry 

[Love88]. The differences between them are that in the Symmetry protocol a cache with 

modified, exclusive data changes its state to invalid, rather than shared, and there are no cache-

to-cache transfers of shared, clean data.) 

Rudolph and Segal [Sega84] and Bitar and Despain [Bita86] have designed protocols 

which are intended to optimize synchronization. The former, called RWB, is based on a read-

broadcast mechanism in which snoops take data from the bus (on data transfers initiated by 

some other processor) if their cache blocks for the data are currently invalid. The write policy 

is write-broadcast (explained below) for the first write to a block and an invalidation signal for 

the second. It is not clear how this broadcast-invalidation sequence benefits semaphore usage, 

since semaphores are written twice per critical section (once for setting, again for clearing). 

The one write-broadcast precludes a private write for lock clearing (which would occur had the 

7 The version of Berkeley Ownership that was implemented on SPUR approximates the private, clean state by 

including an addressing mechanism for detecting references to the stack. Separate invalidation signals are not issued 

for these references .. 
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first write triggered an invalidation instead), and the invalidation signal nullifies the data in 

other caches, just when they need to detect that the lock is available. A better invalidation point 

would be after two write-broadcasts. This would allow locks to remain in all caches, always 

with the most current value, but other shared data to be invalidated after two writes. The 

scheme seems better designed for the multiple readers/single writer situation. Other drawbacks 

of the protocol are that (1) because of the write-broadcast it is intrinsically tied to a one-word 

block size (unless the cache block state includes a valid bit per word rather than a single state 

value for the entire cache block) and (2) the additional snoop accesses to the cache for the read­

broadcasL.s can interfere with CPU processing (see Chapter 6). 

The Bitar and Despain protocol introduced two special coherency states to be used in lieu 

of explicitly setting and clearing locks. One signifies that a cache has locked a data block; the 

other that other processors are waiting for the locked block. If the block remains in the cache 

until the unlock, the additional states reduce the bus operations needed for locking and unlock­

ing. However, if the block is replaced, its locked state will be lost Therefore a technique for 

storing and checking the locked state in the block must be adopted, in addition to the extra 

cache states. Their proposed implementation for busywaiting requires a special bus arbitration 

scheme to give maximum priority to waiting processors, a special busy-wait register that con­

tains the address of the lock (for waiting processors) and a snoop for the busy-wait register that 

monitors the bus for the unlock, obtains the lock and interrupts the processor to begin executing 

the critical section. The obvious dtawback of this implementation is the complexity of the addi­

tional hardware. The advantage is that the busy-wait register and its snoop eliminate rereading 

the semaphore after it has been unlocked. This pcn:llty is paid in the other write-invalidate pro­

tocols. 

The protocol implemented in the VMP multiprocessor [Cher86, Cher88] is a hybrid 

between the write-invalidate and software coherency schemes. Like the write-invalidate proto­

cols, it utilizes a snoop (which they call a "bus monitor") to monitor the backplane fN 
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coherency bus operations. However, the snoop's actions are implemented in software, rather 

than as part of the cache controller hardware. The snoop does its lookup on an action table 

(rather than the cache tags), that contains a bus operation-dependent action for each cache 

block-sized unit of main memory (called cache page frames). For each action that requires a 

snoop response, the CPU is interrupted; it then executes interrupt handler code from local 

memory. The coherency protocol that is implemented is ownership-based (very similar to the 

Synapse protocol, including the three bus operation sequence for reading dirty data), with an 

additional feature: a special bus operation that can be used to signal that a lock has been 

unlocked. The CPU delay to perform all operations caused by the interrupt-driven coherency 

implementation is an extra source of overhead for V:MP, relative to the other write-invalidate 

protocols. Its attraction is the ease with which the software algorithms can be debugged. Furth­

ermore, VMP's operating system includes a routine for differentiating between shared and 

private data, which results in optimizations identical to those produced by the private, clean 

state of the illinois protocol and the stack segment of the Berkeley Ownership implementation 

on SPUR. 

-·· -tJ. The Write-Broadcast Protocols 

Rather than invalidating cached copies of shared, writable blocks, write-broadcast proto­

cols broadcast writes to shared blocks, so that all caches and memory have access to the most 

current value. Blocks are known to be shared through the use of a special bus line. Snoops 

assert this signal whenever they address match on an operation for a block t.~at resides in their 

caches. As long as a writing processor detects an active shared line, it will continue to issue the 

broadcasts. In the absence of an active shared signal, the processor will complete the write 

locally. Thus, the signal provides fof write-through for shared data, but allows a copy-b~ck 

memory update policy to be used for private data. 
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Write-broadcast protocols have potential performance benefits for both private and 

actively shared blocks. First, an inactive shared line prevents needless bus operations to data 

that reside only in the cache of the writing processor. In addition, because it broadcasts all 

shared updates, write-broadcast avoids the pingponging of shared data among the caches that 

would occur with the invalidations of the write-invalidate protocols during periods of data con­

tention. However, for data that is shared in a sequential fashion, with each processor complet­

ing all its accesses to the data before another processor begins, the w!i.te-through policy for 

shared data may degrade bus performance. 

Write-broadcast protocols were proposed for the Xerox P ARC Dragon [McCr84) and have 

been implemented on the DEC Firefly [Thac88). The difference between the two protocols is 

that the Dragon updates memory only on block replacement (in a procedure identical to the 

Berkeley Ownership protocol), while the Firefly updates simultaneously with each write to 

shared data. (See Chapter 4, section 2 for a more detailed description of the Firefly protocol.) 

Competitive snooping [Karl86, Karl88) is a write-broadcast protocol that switches to 

write-invalidate when the breakeven point in bus-related coherency overhead between the two 

protocols is reached. This point occurs when the number of cycles for the broadcasts issued 

equals the sum of the cycles should all processors need to reread the invalidated data. Their 

proposed implementation assigns a counter, whose initial value is the cost in cycles of a data 

transfer, to each cache block in every cache. With each snooped broadcast, some cache's 

counter is chosen to be decremented. When its value is zero, the block is invalidated. When all 

counters are zero, the write-broadcasts cease. Any access by a processor resets its cache's 

counter to the initial value. Competitive snooping limits the overhead of write-broadcast to 

twice that of optimal, but at some cost in hardware complexity. Finite state machines for 

write-invalidation and write-broadcast protocols, bus lines for picking the counter to be decre­

mented and state bits (per cache line per cache) for counting must be implemented. (A more 

detailed description of two competitive algorithms appears in Chapter 6.) 
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One of the Clipper's coherency mechanisms is a combination of the software and write-

broadcast approaches. The compiler designates all cache lines as shared or private, copy-back 

or write-through. When the cache state indicates shared/write-through, the snoops monitor the 

bus write, and update their caches if there is an address match. The technique reduces the 

number of snoop lookups on the single-ported cache state RAMs. (Private data is not snooped.) 

2.4.4. IEEE Classification of Distributed, Hardware Protocols 

Sweazy and Smith [Swea86] devise a general classification for all existing distributed, 

hardware coherency protocols. The model includes the union of the states of all the distributed 

protocols (shared unmodified, shared modified, exclusive modified, exclusive unmodified and 

invalid); and their standard backplane implementation (the Futurebus) includes signals to 

implement all coherency operations. The resulting protocol is therefore a superset of the distri-

buted protocols and would allow caches with different protocols and memory update policies to 

communicate successfully. 

2.5. Initial Performance Studies 

The early research in cache coherency focused on algorithmic development (the proto-

cols), proofs of functional completeness by case analysis8 (using Markov chains of the 

coherency states and the bus operations that cause transitions between them, e.g., 

[Sega84, Yen85]), and a static analysis of the performance of individual bus operations. More 

recent work has focused on a dynamic analysis, via analytic modeling9, parameterized simula-

8 Case analysis is a method of verifying !he functional completeness of an algorithm by an exhaustive examina­

tion of the nuniiications of each input condition. 

9 An analytic model is a mathematical de.~ption of a system that solves for steady state behavior. It is a static 

description. expressing the dependencies among the system parameterS. The parameterS in the model are random 

variables. 
10 A parameterized simulation is a description of system behavior over the time domain. Its inputs are synthetic 

events whose valu~ are drawn from probability distributions. 
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tion 10 and trace-driven simulation. 11 In the analytic work, simplifying assumptions were often 

made to reduce the computation time needed to solve the models. For example, several studies 

simplified the complex interactions between the caches and the bus and omitted entirely the 

interference between the snoop and the CPU's side of the cache controller. The most serious 

simplification was for workload behavior. 

Patel [Pate82] modeled processor utilization (the amount of time it took a processor to 

accomplish one unit of work) of a multiprocessor system with a write-through cache. In the 

absence of any knowledge of the nature of sharing, his model assumed that multiprocessor 

memory references were random, independent and uniformly distributed over all of memory, 

i.e., there was very little sharing of any kind. Therefore the activity of one processor could be 

modeled and then multiplied by the number of processors. His study found that processor utili-

zation is a function of miss rate times the data transfer time. 

Dubois and Briggs [Dubo82] modeled a shared memory multiprocessor with a centralized 

coherency scheme. Their model more accurately describes the details of coherency activity, 

and also includes separate workload models for write-shared data and the other types of 

memory accesses. To emulate the more complex coherency mechanisms, they modeled the 

effect of transmitting the invalidation signals and of a processor's waiting for the release of 

read/write data. However, their model still omits the effects of contention for the global direc-

tories, which biases their results optimistically. The reference stream for their simulation was a 

merging of private and shared read-only accesses, generated using the LRtJ stack model12, and 

11 Trace-driven simulation uses a trace reflecting the execution behavior of the program under srudy as its input. 

For coherency srudies the trace is composed of memory references issued by all processors in the multiprocessor. 

12 The LRU (Least Recently Used) stack model models a reference string (a series of memory addresses) with 

an LRU distance string. It is one of the priority stack techniques. Priority stack techniques are a method of simulat­

ing multiple-sized caches concurrently. They assume that (1) larger caches always contain the blocks that are 

resident in the smaller caches, (2) the last referenced cache block is on the top of the stack and is the only block on 

the stack to move up the stack, and (3) no blocks below the old position of the referenced block move. The LRU ver­

sion uses the least recently used block as the victim for stack replacement [Coff73]. 
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shared read-write references, based on an independent reference model13• (As in the Patel 

model, the latter is used because it is assumed that shared data has poor locality of reference.) 

The analysis assumed very small levels of sharing (a large amount was considered to be one 

percent), and all simulations were done with approximately 1000 addresses. Nevertheless, their 

results support intuitive notions about the sources of performance degradation in centralized 

coherency schemes. They found that coherency invalidations increased the miss ratio, the 

traffic required to enforce the coherency rules (primarily copy-backs associated with the invali-

dations) and access the global directory, and the amount of time the processor was blocked from 

the cache. All metrics increased proportionally to the degree of sharing. The degradation due 

to processor lockout from the cache for a state change (valid to invalid, private to shared) was 

found to be insignificant. 

The Dubois-Briggs workload model was important, because it served as the basis for three 

studies of distributed protocols [Arch86, Vem86, Vem88]. [Vem86] modeled particular 

features of coherency protocols, rather than the protocols themselves, using generalized timed 

Petri Nets14• They evaluated the effects of adding each of the fearures to a base coherency pro-

tocol very similar to Write Once. The four fearures were a shared bus line that could be used to 

implement a private clean state, 15 the Owned Shared state of the Berkeley Ownership protocol 

which allows cache-to-cache transfers of dirty data without the need to update memory, an 

invalidation signal and the write-broadcast mechanism, assuming use of the shared line. They 

meastL."ed bus utilization and processing powe~6 for data caches only. Their results indicated 

that the shared line provided the biggest performance advantage, particularly as the level of 

13 In tl!e independent reference: model the prob::.bility of a reference to a particular ne::t block is fixed; it 

depends neither on the block previously referenced nor on whether the current block was referenced before. In other 

words. the model does oot reflect locality of reference. 

14 Generaliz.ed timed Petti Nets is an ;.nalytic teclmique whose state transitions have a deterministic firing dura­

tion, but the next state is stipulated by a probability distribution. 

15 See Section 2.3.3 for a description of the use of the line. 

16 Processing power is the number of processors times their average CPU utilization. 
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sharing was increased. They also found that the invalidation signal and dynamically switching 

from write-broadcast to write-invalidate (as in the protocols described in [Sega84] and 

[Karl86, Karl88]) contributed a negligible performance improvement over Write-once. It 

should be noted, however, that their model's probabilistic inputs dictate a homogeneous access 

pattern to the shared data, across processors. This reference pattern, one in which all processors 

have equal access to the shared data, i.e., there is poor per-processor locality of reference, is one 

in which write-broadcast should perform well. Conversely, write-invalidate should behave rela-

tively poorly, because the write-shared blocks will ping-pong among the caches. Therefore 

their choice of workload model biased the results; and the poor performance of the write-

invalidate protocols should come to no surprise. They also found that a one-word block size 

performs best, and for a similar reason. Here the uniform accesses to shared data were coupled 

with a pessimistic hit ratio (.5) for write-shared data. 

Identical studies are performed in [Vern88], but using a simpler modeling technique, 

Mean-Value Analysis, 17 in place of the generalized timed Petri Nets. Their studies indicate that 

the simpler methodology yields results comparable (within 3 percent on average) to the more 

detailed model, across all protocol features and a wide range of parameter values. (There is a 

slight tendency to underestimate bus utilization and overestimate inter-processor memory and 

cache interference, but the differences are all tolerable.) The paper convincingly demonstrates 

the superiority of the simpler approach, in terms of both the accuracy of its results, and its 

efficiency in obtaining solutions, and therefore iLs ability to solve for larger systems. However, 

because Mean Value Analysis suffers from the same probabilistic treatment of the shared data 

reference input strea.rn as generalized timed Petri Nets, again, the results are biased toward 

write-broadcast. 

17 Mean-Value Analysis is an analytic technique that solves a set of equations that compute the mean value of 

certain performance (output) metrics in terms of the mean value of the model's inputs. 
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Archibald and Baer [Arch86] compared the behavior of several of the distributed, 

hardware protocols via parameterized simulations. Unlike previous comparative protocol stu-

dies, they tried to make the specification of a protocol independent of its implementation. For 

example, they disallowed the simultaneous updating of memory during a block transfer to a 

cache that is used in the illinois protocol. Again, their workload model was derived from the 

one developed by Dubois and Briggs, and their metric for protocol comparisons was one similar 

to processing power. Their analysis focussed on scenarios of high and low (i.e., mostly private 

data) contention for shared blocks. Many of their results are intuitive. They found that the per-

formance for all protocols was comparable for a small number of processors; but that as the 

number of processors increased, protocols that could detect private, clean data (i.e., the write-

broadcast and Illinois protocols) performed best, assuming a low amount of sharing; with more 

contention for shared data (modeled by shared block references of five percent on sixteen shared 

blocks) the write-broadcast protocols did best. One counter-intuitive result is that with higher 

levels of sharing, Berkeley Ownership performed better than the illinois protocol. While it is 

true that the Berkeley protocol has a more efficient handling of shared data (because of the 

Owned Shared state), the latter is better at handling private data (because of the clean private 

state). Since private data is referenced (in their study) the vast majority of the time (95 per-

cent), Berkeley Ownership's better performance over the illinois protocol protocol is surpris-

m. 0' 18 
e· 

[0wic89] modeled the two basic software coherency mechanisms, noncacheable shared 

data and cache flushing, with both a bus and cross-bar interconnect. The model includes a com-

ponent for bus a_11d interconnect contention, as well as for the workload and system operations. 

The results support intuitive notions about the performance of these protocols. At low levels of 

18 In this study the cache sizes were small (2K and 16K bytes). A larger cache would have exaggerated the 

overhead of sharing, which this research has shown to be relatively immune to the benefits of increasing cache size. 

See Chapter 5. 
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sharing with few processors there is little difference in protocol performance. As these parame­

ters rise, the effectiveness of noncacheable data falls off rapidly. (At high levels, it saturates the 

bus with a processing power less than two.) A sensitivity analysis of several model parameters 

in the bus studies indicates that cache flushing is quite sensitive to the number of data refer­

ences, particularly shared data references, and the number of accesses to a block before it is 

flushed. A comparison of the software techniques to a representative distributed, hardware pro­

tocol (Dragon) indicates that the snooping approach gets better performance at all parameter 

values. In the multistage interconnection studies, since network bandwidth increases with the 

number of processors, both software protocols scale well. Unlike the previous analytic studies, 

this work includes a workload parameter that reflects per processor locality of reference to 

write-shared data. The parameter measures the number of accesses to a write-shared variable 

before it is flushed from the cache and is used to approximate the number of writes before flush­

ing. 

The remainder of the work on coherency protocol performance has a more direct bearing 

on the topics covered in this dissertation and therefore will be discussed in conjunction with the 

results of particular studies (see Chapters 4 through 6). All experiments were done using trace­

driven simulation. The traces were generated in 400K reference snapshots on a four-processor 

VAX 8350 running the MACH operating system [Baro85, Site88]. Since the generation tech­

nique was microcode-based, the traces contain references from a cross-context workload, 

including th.~ oper:-.ung :>ystcm. Briefly, [Site88) analyzed several aspects .of multiprocess and 

parallel processing cache behavior, the most relevant of which for this work was the measure­

ment of the additional bus traffic caused by the invalidations in write-invalidate protocols. 

[Agar88a) studied the temporal, spatial and processor locality of user and system references in 

parallel programs; and [ Cher88) examined the behavior of parallel programs running on a VMP 

simulator, in particular the change in coherency overhead as block size was increased. The stu-· 

dies differ from this dissertation research in the type of experiment done and the workload used. 
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2.6. Critique of Previous Studies 

Most previous analyses of coherency protocols have had weaknesses in methodology, 

both analytic technique and workload model, and choice of metric. Their methodology, be it 

case analysis, analytic modeling or parameterized simulation, restricted them to a static analysis 

of particular protocol functions or a simplified dynamic analysis. Case analysis is an important 

tool for specifying the functional completeness of a protocol, but it is a static modeling device. 

Analytic modeling and parameterized simulation are more sophisticated techniques. (For 

example, parameterized simulation characterizes dynamic protocol behavior.) However, they 

are only starting points and both have drawbacks. 

Detailed analytic models with realistic parameter values are often computationally expen­

sive to solve. They may be simplified in order to get a solution more quickly. The disadvan­

tage of the simplified versions is that their aggregate behavior parameters and convenient (for 

solvability), but inaccurate, assumptions about the probability distributions do not model reality 

accurately. These simplifications have an important effect on the results of modeling coherency 

protocols. 

In the absence of multiprocessor programs from which to determine workload parameters, 

all previous analytic studies (except [Owic89]) made certain assumptions about the type and 

frequency of sharing. They assumed that memory accesses to write-shared data are independent 

and uniformly distributed across processors. This was expressed in the models by a parameter 

for the proportion of accesses to write-shared data; its value was varied to e_mulate low or high 

levels of sharing. 

The uniform access pattern models multiprocessor contention for write-shared data. 

Therefore the models' workload assumption guaranteed that those protocols that were designed 

to handle contention behaved well, relative to those that are more appropriate for a more 

sequential sharing behavior. It is well understood that uniprocessor programs exhibit temporal 
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and spatial locality in their memory reference behavior. (In fact, [Dubo82] and [Arch86] use 

the LR U stack model to generate references to private data and instructions.) There is no reason 

to assume a priori that the same locality principles will not apply to shared data. 

Many previous studies have focused on total system performance, using processing power 

(i.e., multiprocessor utilization) as their metric. Processing power is a good summary metric, 

but it doesn't provide the detail needed either for a thorough analysis of the behavior of parallel 

programs or for multiprocessor cache and cache coherency protocol design. Different key 

aspects of system performance should be identified and analyzed separately. For example, 

measuring contention between the snoop and the CPU over use of the cache is important, 

because it may explain the cause of lower processor utilization and program speedup (as 

opposed to sequential portions of the code). Secondly, an understanding of cache miss ratio 

will aid in the design of cache organizations for multiprocessors; this is particularly critical if 

those designs must be based on different criteria than for uniprocessor systems. Finally, metrics 

other than processing power will provide a better understanding of the limits of bus-based sys­

tems. Bus utilization, and the effect of shared memory accesses on it, is important to measure, 

because the bus is the critical resource in single-bus multiprocessors. 

In this dissertation I plan to correct the deficiencies of the previous work in several ways. 

First, a model of coherency overhead will be developed that incorporates a more accurate work­

load component, one in which the pattern of access to write-shared data is modeled in detail. 

Second, trace-driven simulation, using memory reference traces of parallel ~pplications, will be 

used to obtain realistic parameter values for the model and to verify it. Third, the studies will 

analyze the causes of parallel program performance, focusing on the components of system 

throughput, rather than simply recording its level. These empirical studies analyze the cache 

and bus behavior of parallel programs and will also be done by trace-driven simulation. The 

combination of a more realistic workload and the detailed studies will provide a better analysis 

of the behavior of parallel programs, running on bus-based multiprocessors. Once that behavior 
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is detennined, a more accurate measurement of coherency perfonna'1ce of panicular protocols 

can be obtained. I treat the trace-driven methodology in detail in the next chapter; and the par­

ticular studies, their metrics and results, and comparisons to the other trace-driven work in 

Olapters 4 through 6. 
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3 Methodology 

3.1. Introduction 

The goal of this research is to understand the sharing behavior of parallel programs and to 

analyze its impact on multiprocessor cache and bus performance, given particular snooping 

coherency protocols. One of the unique and important aspects of the work is that it was 

intended that the studies be driven by a real worldoad. ~refore appropriate parallel programs 

had to be found, and memory reference traces had to be collected from them in order to carry 

out the experiments. Several problems were encountered in doing this, an·relating to the paral­

lel nature of the worldoad. 

First, the programs themselves were difficult to locate. Not many substantial parallel pro­

grams had been written, and most of those in existence were proprietary to particular multipro­

cessor companies or customer-owned, and therefore unavailable to the research community. In 

addition, in order to avoid justifiable criticisms of an inappropriate worldoad, I considered it 
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crucial to use programs that had been written for a multiprocessor architecture similar to the one 

being studied. Therefore I limited the search to those running on bus-based, shared memory 

machines. The programming paradigm of these programs was a model in which the granularity 

of parallelism was a process. This eliminated the relatively larger body of numerical programs 

that had been written for other multiprocessor architectures, and whose granularity of parallel­

ism was much finer, on the level of do loop iterations, for example. 

Even when using programs written for bus-based, shared memory multiprocessors, there 

were still questions about the applicability of memory reference traces generated on one 

machine being used for simulations of another. Issues concerning inter-processor synchroniza­

tion and varying instruction execution times had to be resolved. The resolution necessitated 

extensive postprocessing of the traces, to identify shared accesses and synchronization points. 

Postprocessing expanded the traces to sizes that were prohibitive for disk residence. The 

storage problems were aggravated by the multiprocessor nature of the experiments, i.e., that 

separate traces were needed for each processor. Therefore trace compaction techniques, spe­

cially designed for handling parallel trace content, had to be developed. 

Special problems were encountered in debugging the multiprocessor simulator, because of 

the asynchronous activity of the processors. The list of potential processor interactions is far 

too numerous to allow individual testing. Therefore techniques were developed to trap system­

wide errors as they occurred in the actual simulations, to prevent the incorrect actions of one 

processor from pe1turbing the behavior of others. 

Each phase of the methodolog;r: trace generation, trace postprocessing and compression, 

and the simulation itself, will be treated in detail in the subsequent chapter sections. Each sec­

tion will address the problems encountered and discuss the solutions. 



43 

3.2. Trace-driven Simulation 

All studies in this dissertation are performed by trace-driven simulation. Trace-driven 

simulation has the advantage over other forms of modeling in that its input, an address trace, 

exactly characterizes the behavior of the program (or a portion of the program) from which it 

was generated. Therefore the order and frequency of events, in this case the coherency-related 

operations, can be accurately measured and analyzed. To the extent that the program is 

representative of a "typical" workload and the details of the system are sufficiently simulated, 

the simulation results are an accurate portrayal of system behavior. Its advantage over measur­

ing activity via a hardware monitor is that one can change configuration parameters to do com­

parative studies. 

The drawbacks of trace-driven simulation stem primarily from the traces being a worm's 

eye view of an actual workload. First, because of storage and simulation time constraints, a 

relatively small amount of activity can be simulated. Second, traces that include operating sys­

tems activity are difficult to obtain. A common technique for generating traces is through 

software that behaves like a symbolic debugger, breakpointing at key locations and dumping 

1race information (see section 3.3). It is difficult to use this type of trace generator in conjunc­

tion with operating systems code, because of kernel protection and the inability to recompile the 

operating system. The lack of operating systems references skews the results by eliminating the 

effect of context switching and the (presumably) lower locality of reference. These perturba­

tions are imponant per se, and also because in many systems the operating system dominates 

the workload. The only other set of multiprocessor traces overcomes this disadvantage, through 

the use of a microcode gen~ration technique in which samples of memory reference activity are 

gathered across several contexts [Site88]. 

An additional reason for doing trace-driven simulation of parallel programs is that it will 

yield parameter values that can be used in analytic models of multiprocessor activity. Research 
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in parallel architectures is still in such a stage of infancy that we do not yet have good intuition 

for parameter values of sharing behavior. (A more complete critique of trace-driven simulation 

appears in [Clar83, Smit85].) 

3.3. The Traces 

Trace-driven simulation has traditionally been applied to uniprocessor studies. Recent 

advances in parallel computing have provided an opportunity to do simulations of multiproces-

sors. In particular, the emergence of commercial multiprocessors and the development of paral-

lel algorithms to run on them have made traces of parallel programs available. For the studies 

in this dissertation, traces were generated from four parallel programs. The programs are all 

CAD tools that were developed for single-bus, shared memory multiprocessors (see Table 3-1). 

The choice of application area was deliberate, so that the workload being analyzed was 

appropriate for small-scale machines. (See section 3.5 .1 for a discussion of this architecture.) 

One program is production quality (SPICE); the others are research prototypes. Two of the pro-

grams (CELL and TOPOPT) are based on simulated annealing algorithms. CELL [Caso86] 

Parallel Applications 

Trace Name Architecture, Program Description I Number of 

Operating Svstem I Processors 

CELL Sequent Balance, Unix simulated annealing algorithm 12 

for cell placeJ?ent 

TOPOPT Sequent Balance, Unix simulated annealing algorithm 11 

for topological optimization . 
VERIFY Sequent Balance, Unix logic verification 12 

SPICE ELXSI 6400 Em bos direct method circuit simulator 5 

Table 3-1: Traces Used in the Simulations 

The traces used in the sharing simulations were gathered from parallel progr«ms that were written for 

shared memory multiprocessors. The programs are all "real", being either production quality (SPICE) or 

research applications. 
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uses a modified simulated annealing algorithm for IC design cell placement that attempts to 

minimize total area and wire length. The algorithm allows cells to overlap in the early stages 

and finally removes all overlaps by the time it completes. The cell descriptions reside in shared 

memory, and all cell moves (for example, placement within a processor's chip area or exchang­

ing cells with another processor) are generated and accepted independently. For the trace, the 

program placed twenty-three cells. Program speedup is 6 on an 8 processor Sequent Balance 

8000, with comparable results to uniprocessor implementations. 

TOPOPT [Deva87] does topological compaction of MOS circuits. The circuit is 

represented in symbolic form (as a Weinberger Array); the algorithm minimizes the layout by 

repeatedly folding the rows of the array. Representations for the array, gates and signals reside 

in shared memory. Dynamic windowing results in array sharing (windows into the array 

change processors over time), and dynamic partitioning shares gates and signals through inter­

window exchanges. The input was a technology-independent multi-level logic circuit. The 

program achieves a speedup of 6 on an 8 processor Sequent Balance 8000, while generating 

solutions similar in quality to uniprocessor results. 

VERIFY [Ma87] is a combinational logic verification program, which compares two dif­

ferent circuit implementations to determine whether they are functionally (Boolean) equivalent. 

The algorithm uses a two-phase technique: the enumeration phase lists all inputs that will pro-

duce outputs of either zero or one for the first circuit, using a PODEM-based 1 enumeration 

algorithm; the second phase simulates the inputs of the first circuit on!' c Second and compares 

the two sets of outputs. The trace snapshot is taken from the enumeration phase, and the major 

shared structure is the graphical representation of the first circuit. The input for the trace was a 

combinational benchmark circuit that is used for evaluating different test generation algorithms 

[Brgl85]. The program achieves a speedup of 7.8 on an 8 processor Sequent Balance 8000, 10 

1 "path-oriented decision making" (depth-first search of graphs representing the circuits). 
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to 11 on a 12 processor machine. 

The final program, SPICE [McGr86], is a circuit simulator; it is a parallel version of the 

original direct method approach. The algorithm solves a set of nonlinear ordinary differential 

equations, which are a description of the circuit's devices. The ODE's are integrated to yield a 

set of nonlinear algebraic equations. These equations are then solved iteratively using the 

Newton-Raphson technique, which first linearizes the equations and then solves the resulting set 

of sparse linear equations using LU-decomposition. When executing on an ELXSI 6400, this 

program achieves speedup that is almost linear with the number of processors, across a wide 

variety of inputs. For this trace the program's input was a chain of 64 inverters. 

All applications use a coarse-grain parallel programming paradigm for carrying out the 

parallel activities (see Figure 3-1). The granularity of parallelism is a process, in this case one 

for each processor in the generation machine. The model of execution is single-program-

multiple-data, with each child process independently executing identical code on a different 

portion of shared data. The shared data are divided into units that are placed on a logical queue 

in shared memory. Each process takes a unit of work from the queue, computes on it, writes 

results, and then returns the unit of work to the end of the queue. When the programs first begin 

execution, there is unusual contention for the locks protecting the queue of work, since all child 

processes try to take a unit of work simultaneously. However, only one process will obtain 

access to the queue at a time. Assuming that each process does a comparable amount of pro-

cessing, they will thereafter access the queue in the same order and spaced in time by the com-

putation interval. This self-scheduling is disrupted by synchronization barriers? which are used 

to separate phases in the computation. The disruption causes more busywaiting and therefore 

an increa<:e in references to shared addresses. All four programs followed this basic procedure, 

2 Synchronization barriers are synchronization points in the application that cause all parallel processes that 

have reached them to wait until the other processes have arrived. Then all processes proceed with the execution 

simultaneously. 
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This simplified representation illustrates the programming paradigm of the parallel programs under study. 

The parent process starts and ends the program, and forks child processes that do the parallel portion of 

the computation. Each child process executes the same code. At certain points in the parallel computa­

tion, the children resynchronize, and then repeat the computation. Within each iteration, the children pro­

cess different portions of the work queue, which resides in shared memory. For example, in a parallel­

ized circuit simulator, the circuit would be divided into groups of devices (nodes). In each iteration, each 

child would process a particular node. Data sharing occurs because the inputs and outputs of the nodes 

interconnect, and a node may be processed by different child processes in different iterations. 

with two exceptions: TOPOPT does not use locks to protect the write-shared data, and there are 

no synchronization barriers in VERIFY. 

The scope of the traces is limited to memory references of the applications, and the 

operating system runtime routines used to set up shared memory and support locking. Because 

of the well known difficulty in tracing operating systems code (see section 3.2), the path of the 

applications through the rest of the operating system is not captured in the traces. In addition, 

each of the parallel processes was run on a single processor without process migration. Despite 

these omissions, the simulations should produce reliable results. The only trace-driven study 

that included operating systems activity found that sharing in the operating system added little 
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to the user figures [Agar88]. For example, the proportion of write-shared references to total 

references and shared data references to total data references remained roughly constant when 

operating systems references were included. Process migration exacerbates bus bandwidth 

demands by causing additional misses when faulting in the process on a new processor and by 

creating coherency bus traffic for private data or cache flushes to prevent it. [Agar88] found 

evidence that process migration decreased the temporal locality of shared references, i.e., 

increased contention for shared data, and introduced sharing for private data. Since I was 

interested in measuring the amount of bus traffic to shared data only, unperturbed by the effects 

of process migration, I chose not to emulate process migration in the simulations. 

Both the Sequent and ELXSI traces were generated using a software trace generator.3 

Both generators function like symbolic debuggers, using trace-trap facilities to halt at each 

instruction and dump trace information, both for instructions and their operands. They also 

included the ability to start and stop tracing and to determine the address range of the code and 

data sections, including the subrange for the shared variables. (The latter was needed for trace 

verification and the identification of shared data.) The ELXSI generator was itself a parallel pro-

gram. Each child process executed on a different processor, tracing the process of the parallel 

application that had been scheduled on its processor. The traces were generated on a per pro-

cessor basis, with the trace records of each processor outputted to a separate output device. The 

Sequent tracer was much more primitive. It executed instructions from each processor on a 

round robin basis; memory references from aU processors were sent to a single Dutput file and 

had to be separated during the postprocessing phase. 

3 The Sequent tracer that was used was adapted from a version written at Sequent; the ELXSI tracer was written 

at ELXSI by John Sanguinetti. 
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3.4. Trace Postprocessing 

Accurate trace-driven simulation of parallel programs requires changes to the traditional 

trace-driven methodology. Both the traces and the simulator are affected. The traces must be 

postprocessed to detect shared data and synchronization points, and the sheer volume of data 

must be handled through special compaction techniques. The simulator must be able to detect 

program development errors in the coherency protocols that are caused by the asynchronous 

interaction of the multiprocessor components. These errors occur both within a single processor 

node (between the snoop and the portion of the cache controller that acts on behalf of the CPU) 

and across processors. (The changes to trace handling will be discussed in the following two 

subsections; enhancements to the simulator appear in section 3.5.4.) 

3.4.1. Detecting and Processing Sharing in the Parallel Traces 

In both the Sequent Balance 8000 and the ELXSI 6400 all child processes that execute in 

parallel have their own virtual address space. If a multiprocessor simulator that implemented 

the distributed, hardware protocols maintained coherency merely on the basis of a cache tag 

comparison, coherency operations would be generated for private data, as well as shared. 

Therefore shared references must be explicitly identified during the trace postprocessing phase 

that precedes simulation. The identification ensures an accurate coherency enforcement, and 

has the beneficial side effect that shared references can be detected for separate analysis. For 

this purpose, shared accesses were further classified as locks or the applications shared data that 

was protected, and cacheable or noncacheable. The identification was achieved through symbol 

tables, load (memory) maps and interactive (generation) runtime identification. In SPICE all 

shared data was grouped into separate Fonran COMMON blocks that were declared to reside in 

shared memory via system calls; the symbol table identifi~d the starting address and length of 

these blocks. Load maps contain addresses of procedures and data of the applications and the 

library routines that support shared memory and lock manipulation. They were used to separate 
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references to the stack, instruction space, and certain areas within the heap that are known sys­

tem shared areas, as well as to locate entry points to specific routines that handled, for example, 

locking. Other addresses had to be identified during runtime. Examples are data that was allo­

cated dynamically into shared memory (locks and semaphores in SPICE and all shared data in 

the Sequent-generated programs) and key code sequences that were embedded within a subrou­

tine, rather than being a discrete function (such as sequences for locking, unlocking, barrier syn-

chronization and the start and end of main algorithm iterations4 
). For the latter both the start­

ing address of the code sequence and the instructions contained within it were needed. Once 

addresses of shared data and synchronization code were known, the traces were postprocessed 

to detect and flag all occurrences. This made detection by the simulator trace-independent. 

The onset of lock and unlock sequences in the traces was flagged, so that serial access to 

shared areas could be enforced and busywaiting could be implemented (and measured) in the 

multiprocessor simulations. In addition, a common lock/unlock sequence was embedded in the 

simulator. It was used in the simulations in lieu of the locking algorithms implemented on the 

ELXSI and Sequent machines, so that the sharing statistics were not perturbed by the differ­

ences between the algorithms. Therefore all locking sequences in the traces were marked, 

through the dynamic probing described above, to prevent their being processed by the multipro­

cessor simulator. 

Synchronization among the processes is dependent both on the sharing exhibited by the 

algorithms of the program, and on particular architectural features being simulated, such as the 

size of the caches and the cache hit and miss times. Because of the latter factor, the synchroni­

zation mechanisms (locking, unlocking and synchronization barriers) are implemented as part 

of the simulator. The order in which processes obtain locks and reach barriers, and the fre­

quency and length of busywaiting for each type of synchronization, is therefore determined by 

4 See a des'-Tiption of the programming paradigm in section 3.3. 
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the dynamic behavior of the simulated processors. The exact order in which processors 

obtained locks and reached barriers on the generation machine is not used, and, consequently, 

busywait sequences for both were stripped from the traces. Busywaiting for locks and barriers 

is simply repetitions of code sequences for obtaining the lock and checking the barrier flag. 

Both could be detected through interactive runtime identification. 

In the ELXSI-generated program, SPICE, coherency was maintained via software 

methods. Since I intended to study distributed, hardware coherency techniques, all memory 

references reflecting the software implementation, such as cache flushing instructions. were also 

eliminated from the traces. These were identified during postprocessing by pattern matching on 

specific opcode vali.les that had been detected at runtime. 

In addition to the postprocessing needed specifically for sharing, routine consistency 

checks were done on both addresses and instructions. The checks insured that (1) all addresses 

were valid for their type (instruction or data), (2) data addresses were in the proper stack, heap 

or constant address ranges, as appropriate; (3) instructions contained the proper number of 

operands for their addressing modes; and (4) opcodes were legal for the type of instruction. 

After postprocessing, the traces contained the address of the memory reference, the type of 

reference (instruction, load operand, store operand), its shared code (for data: private data, a 

lock or applications shared data, cacheable or noncacheable; for instructions: the beginning and 

end of a lock or unlock routine, the beginning of a busywaiting sequence, a barrier, or a 

coherency-related instruction which should be ignored by the simulator), whether the reference 

was from the user program or the runtime library, the number of execution cycles on the genera­

tion machine and the opcode, both only for instructions. 

Finally, both the Sequent and the ELXSI have variable length instructions and data. The 

number of bytes actually transferred during the memory accesses was also determined during 

postprocessing, based on the particular opcode and data type. Therefore postprocessed traces 



52 

contained additional memory references for all accesses that were larger than four bytes. This 

provided correct processing when varying the cache block size in the simulations and made the 

traces independent of the particular block and word size of the generation machine. 5 

3.4.2. Trace Compaction Using a Cache Filter for Parallel Programs 

An additional problem of trace-driven simulation is the large quantity of disk storage 

required for the traces. This amount can be excessive even in uniprocessor systems, because a 

fairly large snapshot (in numbers of memory references) is needed to obtain statistically 

significant results. As cache sizes increase, this number mushrooms. The problem is exacer-

bated in multiprocessor simulations, because the size of traces for parallel programs is directly 

proportional to the number of processors being simulated. For example, the 6 million reference 

(per processor) traces used in this dissertation, after postprocessing, comprised approximately 

1.8 to 2 gigabytes for each 11 or 12 processor Sequent trace and .9 gigabytes for the 5 processor 

SPICE. Practically speaking, the traces must be compacted to be usable. Traditionally, encod-

ing schemes, such as Ziv-Lempe1 compression [Ziv78], have been used. Memory reference 

traces that are used for cache studies can be further reduced by special techniques, such as cache 

filtering. 

Uniprocessor cache filters reduce the size of memory reference traces by removing all 

cache hits from the trace. The filter is a cache simulator, whose input is the original trace, and 

which outputs trace records of cache misses and summary information of the missing cache hits . 

. 
In other words, only those references that cause bus operations are explicitly recorded in t"'e 

filtered trace. There are two restrictions on the configurations of caches that are analyzed with 

the filtered traces. Both restrictions guarantee that caches of varying sizes see a correct hit/miss 

usage of :efcrences. First, the analyzed caches must contain no fewer sets than the cache simu-

lated in the filter, second, they must use the same block size as the filtered cache. 

5 The word size on the ELXSI 6400 is 64 bytes. 
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The stack deletion filtering technique, described in [Smit79], was developed to analyze 

program paging behavior, but can easily be adapted for cache studies. In the most general ver­

sion of the scheme references to the first D-1 positions (D being the deletion parameter) in an 

LRU stack of memory references are removed from the trace, and a counter, reflecting the 

amount of processing time required for the number of references that were eliminated, is output­

ted with the next recorded reference. For one million reference traces, the technique achieves a 

reduction in trace length (where length is defined in numbers of entries) of a factor of 14 to 36, 

when D is, for example, 6. However, since the algorithm is not directly tied to a cache simula­

tion, some error in the hit/miss classification is introduced when using the compressed data, 

when D is greater than 2. The error should decline as cache size increases. 

[Puza85] represents the summary cache hit information with runlengths of consecutive 

hits. For caches ranging from 4K to 16K bytes, with 64 and 128 byte blocks, his method pro­

duces a flltered trace approximately one tenth the size of the original. My technique for parallel 

traces was adopted from this approach. 

The compression technique in [Samp89] records the difference between the address of the 

reference that hits in the cache and the one that most recently missed in the same block. 

Because it exposes the patterns of locality in memory references, it produces traces that are 

good candidates for further compression by the schemes that rely on pattern matching tech­

niques. When used as a preprocessor to Ziv-Lempel compression, the technique produces 

compressed files at least as small as [Puza85]. Although it does not compact as well as other 

schemes, it retains all information from the original trace. Therefore the original trace can be 

reconstructed, for example, to regenerate traces for a different block size or smaller cache size 

by one of the more tightly compacting methods. 

Because of the additional bus operations caused by sharing, I broadened the criteria for 

reference elimination by cache filters for traces of parallel programs from Puzak's simple 
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hit/miss model to a filtering technique that is based on any change of state. In this more general 

scheme, state is defined as the superset of cache state, dirty/clean state, coherency state and syn-

chronization state.6 Cache state is the criteria used in [Puza85]; it differentiates between valid 

and invalid blocks, and is required to support the hit/miss criteria. Dirty/clean state distin-

guishes between the first write to a block and all others. It is needed for two reasons. First, 

only the first write in a sequence of per processor writes generates a bus operation (the invalida-

tion signal) in the write-invalidate protocols; and, second, dirty, private data must be copied to 

memory on block replacement. 

Coherency state includes the five MOESI values (invalid, private clean, shared clean, 

private dirty, shared dirty). Generating a memory reference for any potential change of 

coherency state essentially means that all shared operands are outputted. All write-shared refer-

ences must be recorded, because it cannot be determined a priori, which will result in a bus 

broadcast in the write-broadcast protocols. Read-shared operands must also be included, 

because in the write-invalidate protocols, write hits produce a different bus operation (an invali-

dation) than write misses (a full data transfer). For the hit to be detected, the block must already 

reside in the cache when the write occurs. 

Synchronization state comprises a processor's first attempt to obtain a lock, its acquiring 

the lock, its unlocking it, its reaching a barrier or flushing the cache. Memory references that 

correspond to these coherency-related instructions (i.e., instructions that implement locking and 

unlocking, reaching a barrier, and executing software coherency mechanisms) must also be out-

p;;ued. If not explicitly recorded in the filtered trace, the multiprocessor simulator would be 

unable to ignore and/or replace them with other sequences of code (see section 3.4.1). 

6 [Thom8S] uses a similar state definition as the basis for a technique for simulating multiple sized caches in a 

multiprocessor and shows that certain aspects of the definition (dirty/clean state and coherency state) obey the cache 

inclusion property. ([.Matt70] showed that cache state, i.e., validity, obeyed inclusion in their development of the 

stack analysis technique for analyzing cache behavior.) It is this inclusion property that allows multiple sized caches 

to be simultaneously simulated or filtered. 
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Explicitly specifying these output records leaves runlengths only to hits of instructions 

and private data (excepting the first write to the blocks).7 The amount of trace reduction 

achieved by substituting runlengths for trace records is called the compression ratio. The 

compression ratio is defined as the number of items in all runlengths (number of references 

eliminated), divided by the total number of memory references. The compression ratio for 6 

million reference versions of the traces in this dissertation, using a 16K byte cache filter with 4, 

8, 16 or 32 byte blocks, ranged from .82 to .85 for CELL, .72 to .86 for SPICE, .85 to .89 for 

TOPOPT and was .86 for VERIFY. Expressed in the inverse terminology, the filtered traces 

were, on the average, 15 percent of the original, unfiltered traces. When further compressed 

with Ziv-Lempel encoding, the final traces were approximately 4.5 percent of the originals. 

3.5. The Multiprocessor Simulator 

3.5.1. Its Underlying Architecture 

The parallel simulator (named "charlie", after Snoopy's well known master) emulates a 

simple, shared memory architecture, in which a modest number of processors (five to twelve) 

are connected on a single bus. The CPU design is RISC-like [Patt85], assuming one cycle per 

instruction execution. Not all instructions follow this model, e.g., multiply and divide; there-

fore the bus utilization results (Chapters 5 and 6) will be slightly overestimated and throughput 

underestimated (Chapter 6), because the simulation processors return to use the bus more 

quickly than in a real machine. All other metrics used in the studies, for example, cache miss 

rates and numbers of bus operations, should be unaffected. Since each processor executes 

7 The runlengths were further subdivided into separate runs of contiguous reads and writes. The subdivision 

was required to ensure correct simulation, because the simulator's cache controller design implemented one-cycle 

cache reads and two-cycles cache writes. 
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almost identical code8
, assuming faster times for a small subset of the instructions should slow 

down all processors unifonnly. Therefore the order of system-wide shared references should 

remain approximately the same as with simulations that follow the cycle times of the generation 

machine.9 

With the exception of those cache parameters that are varied in the studies, the memory 

system architecture of the simulator is roughly that of the SPUR multiprocessor [Hill86]. The 

simulator has a one-level cache, on the board; it is direct mapped, with one-cycle reads and 

two-cycle writes. There are two copies of the tag and state, one for the CPU, the other for the 

snoop. Its cache controller implements segment-based addressing, no fetch-bypass on reads, a 

test-and-test-and-set sequence for securing locks [Wood87], and many of the timing constraints 

of the actual SPUR implementation. Bus arbitration is implemented using a modified NuBus 

protocol [Gibs88], and bus contention is accurately modeled. Several of the architectural 

specifications are stipulated at runtime to allow flexibility in changing the studies; examples are 

the choice of coherency protocol, the cache configuration (cache size, block size and associa-

tivity), the number of processors, and timing specifications for bus operations, bus arbitration, 

and cache controller and snoop functions. The activities of the cache controller and bus are 

implemented in fine detail, with separate timing variables for most suboperations; the CPU is a 

black box; and, since no program results are kept, main memory and the data portion of the 

cache are nonexistent. 

3.5.2. Implementation of the Simulator 

The simulator is constructed as a group of lightweight tasks, executing within a single 

process. Each task has its own stack, which is copied into the stack space of the process, when 

8 Except for those processing either the first or last iteration of a loop. 

9 Simulations incorporating the cycle times of the ELXSI 6400 and Sequent (National Semiconductor 32000) 

processors were run for comparison to the results in Chapter 5. Except for bus utilization, which was lower, all 

results were consistent with the ones reported in this dissertation. 
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it is its turn to be executed. The tasks are made to look as though they are running in parallel by 

manipulating both systemwide and task-specific clocks (described below). Each task simulates 

a component of a multiprocessor, (e.g., a CPU, the processor's cache controller (PCC), the 

snooping portion of the cache controller or the bus). A deterministic event-driven simulator 

base, Simon [Fuji83, Hell84], handles all task scheduling, and synchronization and message 

passing among the tasks. For example, a message may be a cache controller request to the bus 

to read a block of data. The bus will not respond to the message until it has finished the current 

bus transaction, and the cache controller is next in line according to the NuB us protocol. 

There are two sets of clocks in the simulator. The global clock indicates the current time 

in the multiprocessor system as a whole. In addition, each task has its own clock that is incre-

mented to reflect the amount of time taken by a particular function, such as a cache lookup or 

bus arbitration. All tasks are scheduled by comparing the tasks' private clocks to the global 

clock, and then scheduling the task with the minimum private clock value. In the architecture 

and coherency protocol-independent simulations used in the sharing model (described in detail 

in Chapter 4), the clocks were incremented by a constant value for each memory reference (imi-

tating round robin scheduling of instructions). In the architecturally detailed and protocol-

specific simulations for the studies in Chapters 5 and 6, the increments accurately mimicked the 

asynchronous behavior of a multiprocessor system.10 

3.5.3. Using the Traces 

The traces were generated on a per processor basis. The number of processors in the 

simulations is identical to the number of processors used in trace generation. For SPICE this 

number is 5, and for the Sequent traces either 11 or 12. Each processor trace is a separate input 

stream to the simulator. As described in section 3.4.1, synchronization among the separate 

10 Other multiprocessor simulators use round robin scheduling even for realistic simulations, e.g., WASH­

CLOTH [Gott80]. 
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input streams depends on the use of locks and barriers in the the programs and is handled 

directly by the simulator. 

To avoid cold start effects in the simulations, all caches obtain steady state before statis-

tics are gathered. Steady state was determined for each trace separately; 11 simulation statistics 

were then gathered on the next 300,000 references per processor (approximately). Several 

longer trace snapshots (one and two million references) for SPICE were analyzed for com-

parison to the 300,000 reference data. Most relevant metrics (for example, cache miss ratio and 

the number of bus operations for shared data) were stable across the different sample sizes; 

those that changed accounted for such a small percentage of total performance that their 

increased value was still 'Jf no consequence. For example, the percentage of per-processor 

busywaiting cycles within total cycles increased by a third. However, they originally accounted 

for only .2 percent of total cycles; therefore the increase was a .06 percent gain in total cycles. 

The simulator keeps per processor and system-wide statistics on memory references, 

misses, bus operations, bus arbitration delay, coherency-related CPU delay, snoop operations, 

consecutive writes to shared addresses, interprocessor contention for shared addresses and 

busywaiting for locks and barriers, both in numbers and cycles consumed. Each category is 

broken down into appropriate subcategories (for example, type of memory reference or type of 

snoop operation); each subcategory is further subdivided into separate statistics for locks and 

applications shared data. 

11 The teclmique for determining the onset of steady state is similar to that used in [Site88]. I first constructed a 

plot of cumulative first reference misses, (i.e., those misses that occur for empty cache locations), versus time, where 

time was measured in numbers of memory references. The plots were taken over a six million reference trace for one 

processor of each program. Steady state occurs when the rate of first reference misses drops sharply. For the studies 

in this dissertation that point was defined to be when the first reference miss rate over the next 300,000 references 

(the trace snapshot for all studies) became .002 or less. 
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3.5.4. Multiprocessor Debugging Techniques 

The asynchronous nature of generating and satisfying memory requests in a multiproces­

sor make debugging more difficult than for uniprocessor simulators. For example, errors intro­

duced to the state of a cache block by one processor may not be detected until that address's use 

by another processor. The amount of time between these events can be considerable (typically 

tens of thousands of cycles in these simulations). Two techniques were developed to streamline 

the asynchronous activities and catch inter-processor errors. 

First, protocol-specific cache controller and snoop operations in the multiprocessor simu­

lator were table-driven. The tables provided a mapping of legal inputs (the type of memory 

request, the current state of the block, etc) to correct outputs for carrying out all aspects of satis­

fying memory references (such as the bus operations, state changes and other actions of the 

snoops and PCCs). They also guaranteed that illegal combinations of inputs were detected. 

Code coverage techniques were applied to the tables to insure that each operation, i.e., that each 

cache state transition, executed correctly. The use of the tables also simplified the code for exe­

cuting shared memory references, both for the operations themselves, such as a bus transaction, 

and for the side effects, such as snoop interference with a processor request 

Second, system-wide assertions of correcmess were provided at certain points in the simu­

lation. Embedded into the simulator was a table of acceptable global cache state configurations, 

given the bus operation that had just taken place on the backplane. For example, after a data 

read that invalidates other caches under the Berkeley Ownership protocol, only one cache 

should hold the block private and dirty; in all other caches, it should be invalid. After each bus 

operation, the current state of all caches for the address of the operation was checked for a 

match with one of the assertions. Any coherency protocol violations detected by the assertions 

halted simulation. 
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3.5.5. Summary 

All studies in this dissertation were performed by trace-driven simulation. The methodo­

logical cycle from trace generation to data analysis was as follows. First. memory reference 

traces were generated from four parallel programs. Second, the raw trace output was postpro­

cessed to identify shared variables and synchronization points and to eliminate those references 

that were specific to the generation machine. Third, the postprocessed traces were compressed, 

using a cache filter specially designed for traces of parallel programs. The final step was the 

simulation itself, which included statistics gathering and analysis. 
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4 The Write Run Model 

4.1. Introduction 

In this chapter I analyze the sharing behavior of the four parallel programs. I was 

interested in determining both (1) the amount of write sharing in the applications, and (2) the 

pattern of multiprocessor accesses to the write-shared data, i.e., whether there was inter­

processor contention for the shared iata (fine-grain sharing) or whether each processor accessed 

it multiple times before another processor intervened (sequential sharing.) Both the quantity 

and pattern of sharing are important factors in relative coherency protocol performance. The 

emphasis here is on the write sharing that is inherent in the application programs themselves, 

rather than that caused by the underlying memory system architecture, or the cache coherency 

protoc~l. To this end, the sharing study was conducted as independent of the architecture, 

implementation, and coherency protocol as possible. Its most important generality was basing 

the analysis on the one-word unit of access of the CPU, rather than a specific cache block size. 
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The primary reason for examining sharing behavior is to evaluate the perfolTilance of 

cache coherency protocols. I have chosen to compare examples of write-invalidate and write-

broadcast protocols, both of which are subsets of the MOESI classification. The specific types 

of protocol were selected, because they are polar opposites in telTils of their approach to main-

taining coherency on bus-based multiprocessors, and they have been widely published and 

implemented (see Chapter 2). 

To complete the protocol evaluation I first develop a simple (and architecture-

independent) model of write sharing, whose parameter values are derived from the sharing 

analysis. The model is based on the inter-processor sharing activity, and reflects the costs of 

write sharing under the two protocols. I then compare the model's approximations of protocol 

performance to the results of realistic multiprocessor simulations, in which the cache architec-

ture (particularly block size) and coherency protocol specifications of the simulator are very 

detailed. Results indicate that the model is a good predictor of protocol perfolTilance for the 

write-broadcast protocols. This is primarily because the one-word coherency block1 of these 

protocols matches the unit of analysis in the sharing study. However, for write-invalidate the 

model is not accurate, because its coherency block is sized to the larger cache block. Write-

invalidate's perfolTilance is quite sensitive to the shared data reference pattern within the block. 

When the pattern is one of sequential sharing, with good per-processor locality of reference, 

coherency overhead is much lower than for patterns that exhibit fine-grain sharing. By limiting 

the analysis to the one-word access of the CPU, the architecture-ind..:pendent .model does not 

capture a processor's spatial locality of reference and therefore mispredicts write-invalidate's 

coherency overhead. Incorporating the size of the coherency block into the model produces 

more accurate results. 

1 The coherency block is that portion of the cache block that is effected by a coherency operation. For the 

\Vrite-invalidate protocols it is the entire cache line; for write-broadcast, one word. 



65 

I shall begin the chapter by first briefly reviewing the two distributed, hardware 

approaches to maintaining coherency, write-invalidate and write-broadcast, and detailing an 

example protocol from each category. The protocols will be used in section 4.3.3 to illustrate 

how the values of the sharing metrics vary with different protocols, and again in sections 4.7 

through 4.9 in the architecturally detailed simulations. Section 4.3 contains a characterization 

of sharing and metrics that reflect the characterization. The characterization is the basis for both 

the sharing analysis and the model of write sharing. Section 4.4 covers additional aspects of the 

methodology that are particular to the sharing analysis, and section 4.5 presents the sharing 

r\!sults. Sections 4.6 through 4.9 address the applicability of the sharing analysis to the two 

types of distributed, hardware coherency protocols. First (section 4.6), the model of write shar­

ing is derived from the characterization developed in section 4.3; then, costs reflecting the 

sources of coherency overhead for each type of protocol are applied to the model to obtain pred­

ictions of coherency overhead. Section 4.7 compares the model's results to the architecturally 

detailed simulations and pinpoints the factors that are responsible for the model's misprediction 

of the write-invalidate protocols, most importantly, cache block size; sections 4.8 and 4.9 

correct the model by incorporating these factors. Lastly, section 4.10 summarizes the results. 

4.2. Write-invalidate and Write-broadcast Coherency Protocols 

Cache coherency in bus-based, shared memory multiprocessors is usually enforced by one 

of the distributed, hardware coherency techniques. Under these schemes, when a processor 

writes to shared data, there are two different procedures that it can follow. It can either invali­

date all other cached copies of the data and then update its own without further bus operations. 

Or, it can broadcast the updates to all other caches, so that all processors always have the most 

current value of the data. The former method is known as write-invalidate, and the laner write­

broadcast. (For a complete description of the two coherency categories and all protocols in 
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them, see Chapter 2, sections 2.4.2 and 2.4.3.) I am interested in contrasting the relative perfor­

mance of these two coherency approaches in copy-back caches. To do this, I shall introduce 

representative protocols in each category, and then use them in the remainder of the analysis. 

Berkeley Ownership [Katz85] is a write-invalidate protocol that has been implemented in 

the SPUR multiprocessor [Hill86]. It is based on the concept of cache block ownership. A 

cache obtains exclusive ownership of a block via two invalidating bus transactions. One is a 

special read operation that invalidates copies of the data in other caches, at the same time it 

obtains the block for the requesting processor. It is used on cache misses. The second is an 

invalidation signal that is used on the first cache write hit. Once ownership has been obtained, 

the cache can update a block locally without initiating additional bus transfers. A block owner 

also updates main memory on block replacement anc provides data to other caches upon 

request. All cache-to-cache transfers are done in one bus transfer, with no memory update. 

Because it creates a data writer that can access a shared block without using the bus, we expect 

Berkeley Ownership to minimize the overhead of maintaining cache coherency in two cases: 

when there are multiple consecutive writes to a block by a single processor, and when there is 

little fine-grain sharing. 

The Firefly protocol uses write-broadcast and has been implemented in the DEC Firefly 

multiprocessor [Thac88]. Its processors broadcast writes to shared data, but use copy-back for 

private (non-shared) data. The bus-watching snoops assert a special bus line to indicate sharing, 

whenever they detect an operation for a block that resides in their respective caches. The 

scheme has potential perforrnailce benefits for both private and actively shared blocks. A pro­

cessor knows when a block retrieved on a cache miss is private, because the shared line is not 

asserted. Therefore all subsequent writes to the block can take place without further bus 

activity. Under Berkeley Ownership, the initial read to shared data provides no hints as to 

whether the block is actively being shared; therefore the invalidation signal must always be 

transmitted on the first write to a cached block, even if there are no other cached copies. 
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Because it broadcasts all shared updates, the Firefly protocol avoids the ping-ponging of shared 

data among caches that would occur with the invalidations of Berkeley Ownership. However, 

for data that is shared in a sequential fashion, with each processor completing many accesses to 

the data before another processor begins, the write-through policy for shared data may degrade 

bus performance. 

Bus-related coherency overhead consists of those bus transactions that are (1) required to 

maintain coherent caches and (2) whose only function is to do so. They are distinct from bus 

operations that fetch data on cache misses and flush it to memory on block replacements. The 

two distributed, hardware coherency approaches described above each have different sources of 

bus-related coherency overhead. In write-invalidate protocols, there are two. The first is the 

invalidation signal needed to maintain coherent caches. The second is the cache misses that 

occur when processors need to rereference invalidated data These misses, called invalidation 

misses, would not have occurred had there been no sharing. They are present because the 

shared data had previously been written, and therefore invalidated, by another processor. 

In the write-broadcast protocols, the coherency overhead stems entirely from the bus 

broadcasts to shared data. They occur for all updates to data that is contained in more than one 

cache, and for the first update to an address after the writing processor has the only copy. (In 

this case the block has been replaced in the other caches.) 

4.3. A Characterization of Sharing and the Sharing Metrics 

4.3.1. The Characterization 

The characterization of sharing serves three purposes. First, it provides an understanding 

of the memory reference patterns of write shared data, i.e., whether there is sequential or fine­

grain sharing. Second, it highlights the essential differences between the protocols, in terms of 

the bus operations they use to maintain coherency. It therefore explains how the different 
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patterns of sharing can affect protocol performance. Third, it is used as the basis for sharing 

models (see sections 4.6 through 4.9) that approximate the coherency overhead of particular 

protocols. 

I have based the characterization on two aspects of memory accessing: the number of 

sequences of single processor writes to an individual shared address, and the length of these 

sequences. Both can be portrayed by the notion of a write run, which is the central concept of 

the characterization (Cf. Figure 4-1). A write run is defined as a sequence of write references to 

a shared address by a single processor, uninterrupted by any accesses by other processors. It is 

Address A 

< CPUl writes (begins CPU 1' s write rWI) 

I 
0 
0 (additional reads/writes by CPUl) 

Write Run 
0 

forCPUl < CPUl writes 

< CPU2reads (ends CPUJ's write rWI) 

< CPU3 reads (a read that is not part of a write rWJ) 

< CPU3 writes (begins CPU3's write rWI) 

Write Run 

I 
0 

forCPU3 0 (additional reads/writes by CPU3) 
I 0 

:< CPU3 writes 

I 

:< CPU2 reads (REreads) (ends CPU3's write rWI) 

I 
I< 

CPUl reads (REreads) 

I 

Time Line '.!/ 

Figure 4-1: Example Write Run for a Shared Address 

A write run is a sequence of write references to a shared address by a single processor. It begins with the 

processor's first write to the address (e.g., the first "CPUl writes"), and ends with the first access by 

another processor (e.g., the first "CPU2 reads"). The second occurrence of "CPU2 reads" illustrates an 

external reread. It is a reread, because the address was read previously (the first "CPU2 reads"), but was 

invalidated (the first "CPU3 writes"). The vertical arrows denote the time over which the the write run 

occurs; the number of writes in this interval is the length of the write run (both are at least 2). 
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initiated by a processor's first write to the address. contains additional reads or writes by that 

processor, and is terminated by the first access by another processor, either a read or write. 

(This latter access is called an external read or write, because it is external from the point of 

view of the processor that is the current writer of a write run.) Write runs are nonoverlapping 

units; and each shared address has a different sequence of write runs. 

A write run could contain read references, as well as writes. This analysis will focus on 

writes (with one exception, external reads. which are discussed below), since shared writes 

cause coherency overhead, and most reads are handled identical:y in both protocols. In both the 

write-invalid~te and write-broadcast protocols, additional bus operations are required to main-

tain coherency on writes. In each case the overhead is different. For example, in Berkeley 

Ownership the initiation of a new write run results in an invalidating bus operation; however, in 

the Firefly each write in a write run potentially causes a bus operation. 

Most reads, on the other hand, do not affect the pattern of shared accesses and conse-

quently the variation in performance due to the particular coherency protocol. The initial read 

to an address by each processor is always a miss; and, given an infinite cache assumption 

(explained in section 4.4.1), reads within a write run are all cache hits. Each type of read takes 

the same number of cycles, regardless of the coherency approach adopted. 

However, reads are important to track in two cases. First, an external read can be the 

cause of the termination of a write run. The number of initial, per-processor external reads after 

a write run is an indication of the number of processors actively sharing an address.2 If the 

external reads are rereads, they are a cause of coherency overhead in write-invalidate protocols, 

the invalidation misses described in the previous section. (The two terms, external rereads and 

2 Passive sharing is a phenomenon of the write-broadcast protocols. It is caused by shared addresses that were 

accessed at one time and still remain in a processor's cache. Although they are no longer being referenced by their 

processor, their presence in the cache drives the shared bus line, causing needless bus broadcasts by the processor 

that is accessing them. An analysis of the additional broadcasts, over varvinl' cache sizes, and the resulting loss in 

performance appears in Chapter 6. 
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invalidation misses, will be used interchangeably, depending on th context External rereads is 

a more general, protocol-independent description and describes aspects of the write run charac­

terization and model. Invalidation misses are external rereads, when applied to write-invalidate 

protocols; I will therefore use this tenn in discussions of protocol-specific coherency overhead.) 

Second, including reads in the counts of references within a write run provides an accurate basis 

for measures of locality. 

The write run characterization of sharing portrays the sources of bus-related coherency 

overhead for the write-invalidate and write-broadcast protocols. For write-invalidate, 

coherency costs occur for the first write in a run, which is the invalidation signal, and for the 

external rereads or invalidation misses. For write-broadcast, each write within a write run 

causes coherency overhead. 

[Agar88] describes a similar characterization, based on the notion of pings and clings. A 

ping is an external read or write; a cling is one of the references within a write run. Their paper 

focuses on the temporal locality of shared references by measuring the time distribution 

between pings and clings. They found that the temporal locality of pings and clings was 

equivalent, and hypothesized that the fine granularity of parallelism in their programs (roughly 

100 instructions) was responsible for the low ping locality figures. Other portions of this paper 

tie into the write run metric results from the analysis of sharing; the two sets of results will be 

compared in section 4.5. 

4.3.2. The Write Run Metrics 

The write run metrics used to analyze sharing appear in Table 4-1. The length of a write 

run is measured in numbers of writes. Beginning with the first write to a shared address by a 

particular CPU, the number of writes by that CPU is counted until the first access by another 

CPU. The count of per-processor first external rereads is the number of different processors L"lat 

reread the address after a write run. This metric indicates the number of processors that are 
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actively sharing the address. 

The sharing ratio and the number of busywaiters measure the level of sharing and conten-

tion •. respectively. The sharing ratio is the total number of write runs divided by the number of 

shared addresses written by one or more processors. The sharing ratio for one address is simply 

the number of write runs that occurred for that address. The metric of interest here is the aver-

age over all write-shared addresses. (It is not necessary to normalize the sharing ratio to the 

length of the trace, since all trace snapshots are identical, approximately 300,000 references per 

processor.) The sharing ratio provides intuition about the level of sharing. Lower values indi-

cate less sharing, while higher values signify more. The metric is an average for the entire 

trace, covering accesses to both locks and applications shared data. The number ofbusywaiters, 

on the other hand. measures contention for a subset of the addresses, i.e., only those for locks. 

The number of busywaiters is the number of processors that are blocked waiting for a lock when 

it is unlocked. Like the sharing ratio, a higher metric value indicates greater lock contention. 

4.3.3. Applying the Metrics 

The write run metrics are useful for analyzing the performance tradeoff between the 

write-invalidate and write-broadcast protocols. A long write run suggests that a write-invalidate 

I Metric 
Cou.11t of writes in a wri~e run 
Count of per processor first external rereads 

Sharing ratio 
Number of busvwaiters for a lock 

jl Aspect of Sharing It Measures Jl 

Table 4-1: Sharing Metrics Based on Write Runs 

This table lists the write run metrics and the aspects of sharing that they measure. The metrics are 

described in detail in the text. 
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protocol should be adopted. After the invalidation signal for the first update, all other writes by 

that processor can take place locally; therefore the cost of the invalidation signal is amortized 

over the entire run. On the other hand, write-broadcast would perfonn better with short write 

runs, particularly those of length one. In this case both approaches incur a coherency-related 

bus operation for the first write; but write-broadcast avoids the read misses of the write­

invalidate schemes. 

The number of external rereads measures a source of coherency overhead in the write­

invalidate protocols only. A large number of external rereads indicates that the addresses would 

have been needlessly invalidated had the coherency protocol been write-invalidate, and that a 

write-broadcast scheme would therefore have been preferred. On the other hand, a low number 

of rereads suggests that the invalidations may have done little hann. 

The performance of the two coherency approaches depends on the combined effects of 

these measures. Even if the write run is short, but there is no sharing, e.g., no external rereads 

for the address, a write-invalidate scheme still might produce the better perfonnance. The 

opposite situation calls for write-broadcast if the number of bytes transferred by external 

rereads is greater than those updated by the number of broadcasts in the write run length, that 

approach is better. 

Write run length may also indicate whether there is contention or fine-grain sharing for a 

shared address, or whether it is shared sequentially by each processor over long periods of time. 

Short write runs, particularly those occurring in a short time interval, suggest that a processor's 

algorithmic use of the data was interrupted by other CPUs also referencing the address, i.e., 

fine-grain sharing. Contention is also greater: the greater the number of external rereads, the 

higher the sharing ratio and the larger the number of busywaiters for a lock. As was explained 

in section 4.2, write-broadcast protocols are well suited for periods of contention, while write­

invalidate performance suffers. 
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4.4. Sharing Analysis Criteria 

The objective of the sharing analysis is to focus on the sharing inherent in the application 

programs, and abstract away the architectural and implementation details of the multiprocessor, 

which could affect the pattern of sharing. For example, in write-invalidate protocols the unit of 

invalidation is the cache block. If the block size is larger than a word, then invalidations due to 

processor writes will unnecessarily nullify the other words in the block. If those words are sub­

sequently accessed by different processors, additional bus reads will be incurred to obtain the 

data. The number, type and order of these bus operations will depend on the particular block 

size chosen. If the sharing analysis focuses on the shared addresses being referenced rather than 

the block size, the results will not be perturbed by changes in block size. 

An analysis of sharing that is independent of the underlying architecture and the 

coherency protocol has several advantages. First, it provides an understanding of the memory 

reference pattern of write-shared data that is inherent in the applications themselves. These 

results can be used to determine coherency overhead for a variety of coherency protocols and 

cache architectures. Second, for a single trace, only one simulation need be done (as opposed to 

one for each combination of architecture and protocol parameter values). Third, the sharing 

simulator is simpler to implement than one that precisely models the features of a particular 

architecture and coherency protocol. (For example, the details of bus arbitration and bus tran­

sactions, snoop activity, and cache controller/snoop interaction over the use of the cache were 

omitted in the sharing analysis). Therefore both simulator design time anq simulation run time 

are shorter. For these reasons, the sharing study was conducted as independent of the architec­

ture, implementation, and coherency protocol as possible. The next two subsections describe 

how this was accomplished. 
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4.4.1. Architecture/Implementation Independence 

Independence from the underlying multiprocessor architecture and its implementation is 

achieved in several ways. First, the simulations assume infinite caches to eliminate the effect of 

cache size on block placement In an infinite cache there is room for all references, and no 

blocks need to be evicted and consequently reaccessed. Reaccessing increases both bus traffic 

and miss ratios of shared data directly, and has an indirect effect by altering the order of proces­

sor accesses to the bus, thereby changing the pattern of shared accesses. 

Second, addresses are tracked, rather than cache blocks, so the analysis is based on the 

unit of access of the CPU. This eliminates the effect of changing the cache block size, and is 

equivalent to setting the block size to one word in the simulator. 

Third, all memory references take the same amount of time, regardless of whether they are 

reads or writes, hits or misses, or the misses are satisfied by main memory or another cache. 

The differences in the amount of time required to carry out these alternatives (in a real system) 

is sensitive to the memory organization, particularly memory latency, the bus transfer time, and 

the cache controller implementation. 

Fourth, memory references are satisfied on a per processor, round robin basis, to give all 

processors equal processing time. 

Lastly, the cycle time per instruction is a constant. Varying the instruction time to mirror 

the underlying implementation affects instruction latency, which, again, alters the global 

sequence of shared accesses by modifying the order in which processors obtain the bus. An 

argument could be made that instruction cycle times of the generation machines should be 

included in the simulation, because the particular choice of instructions reflects the semantics of 

the parallel algorithm. However, in the current programming paradigm (explained in Chapter 3, 

section 3), all parallel processes are executing the same code. Thus the variation in instruction 

times would be identical across processors. 
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4.4.2. Coherency Protocol Independence 

Results of the architecturally detailed simulations (see section 4.7) indicate that the 

metrics associated with multiprocessor performance, and the sharing aspects in particular, are 

sensitive to the timing differences introduced by the choice of cache coherency protocol. The 

differences affect the amount and pattern of sharing and the execution time of the program in 

three ways: directly, by causing different bus events to occur, and indirectly by (1) altering the 

multiprocessor (systemwide) order of references to shared data and (2) varying the amount of 

busywaiting needed to obtain a lock. Therefore the sharing simulations were done without 

introducing protocol-related variations, i.e., with no bus-related overhead involved in carrying 

out the sharing operations. Under this coherency model, accesses to shared data are still tracked 

and coherency maintained, but with no cost in time. 

4.4.3. Synchronization 

Two aspects of processor synchronization (and their corresponding overhead) are still 

included: barriers and busywaiting for locks. Both of these constructs are reflections of the 

underlying algorithm. Barriers prevent processes from executing beyond a certain point in the 

algorithm, until all parallel processes have reached that point. They are used to guarantee a 

correct ordering of phases of the program, e.g., to separate time steps in a circuit simulation. 

Busywaiting is more difficult to justify. One could argue that busywaiting should be elim-

inated, because it reflects the timing constraints of the underlying architecture and the policy of 

the cache coherency protocol,3 as well as the algorithm. However, under the assumption of 

architecture and coherency protocol independence, the busywaiting that occurs is a reflection of 

contention for the shared locks inherent in the application's flow of control. 

3 For example, the extent to which busywaiting is done either over the bus or locally in the cache varies among 

protocols. 
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4.5. Results of the Sharing Analysis 

This section contains the results from the architecture- and protocol-independent sharing 

analysis. Statistics for the traces by type of reference appear in Table 4-2. The nonsharing-

related figures are within the normal range of uniprocessor program behavior. The important 

figure for sharing analyses is the low percentage of shared accesses4
, particularly to write-shared 

data. Recall that the traces contain applications references only; no references to shared operat-

ing systems data structures are included. Therefore, unless operating systems activity adds sub-

stantially to the number of write-shared references,5 memory references due to coherency over-

head will be a small component of the total. However, they may still comprise a substantial 

proportion of total bus operations, since most references to write-shared data result in a bus 

transaction, and many board-level caches have fairly low miss ratios (see Chapters 5 and 6). 

A further classification of shared references by type of data appears in Table 4-3. Note the 

preponderance of references to applications shared data level over the locks that protect it. In 

three of the programs applications shared data is only accessed within critical sections. The 

paucity of references to locks suggests that there is little contention for this data. A higher per-

centage of reads over writes for lock data (e.g., in CELL and SPICE) means that there was 

busywaiting for the lock. A lock write value exactly twice that of the reads (VERIFY) signifies 

a total absence ofbusywaiting. The locking algorithm is the test-and-test-and-set sequence used 

in the SPUR multiprocessor: the read is the initial access of the lock; the two writes are for set-

ting and clearing. (TOPOPT does not use locks; it protects its shared data with barriers and the 

semantics of the algorithm, i.e., within a particular phase of the program there are multiple 

readers for a shared address, but only one writer.) 

4 Shared data is defined to be those addresses that reside in a program's shared memory. References to them 

are included in these figures, whether the data is currently being shared or not 

s Results from the first trace-driven study that includes operating systems references indicate otherwise. 

[Agar88] found that references to shared data in MACH comprised from .5 to 1.8 percent of total references and 3.5 

to 12.5 percent of total shared data references (for both user and system). 
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Basic Trace Statistics 

Trace Refs Code Data Reads Writes Private Shared Read Write 

(1000s) (Data) (Data) (Data) (Data) Shared Shared 
(Data) (Data) 

_{proponion of total references) 

CELL 3,732 .546 .454 .356 .098 .310 .144 .131 .013 

SPICE 1,538 .629 .371 .256 .115 .283 .089 .070 .019 

TOPOPT 3,300 .662 .338 .316 .022 .196 .142 .139 .003 

VERIFY 3 605 .682 .318 .255 .063 .187 .131 .121 .010 

Table 4-2: Basic Trace Statistics 

Basic Tr:'ce Statistics: Details of the Shared Data 

Trace Shared Applications Shared Data Locks Shared 

Refs Total Reads Writes Total Reads Writes Data 

(1000s) (ProP< rtion of shared references) 
Space I 

(Kbvtes) , 

CELL 537 .915 .827 .088 .085 .081 .004 326.6 

SPICE 136 .899 .697 .202 .101 .091 .010 26,431 

TOPOPT 470 1.000 .980 .020 .000 .000 .000 22.2 
I 

VERIFY 472 .993 .919 .074 .007 .002 .005 114.5 

Table 4-3: Shared Data Trace Statistics 

The number of references is the total processed in the sharing simulation. The proportions are the arith­

metic means across all processors. They were calculated from the simulations results, assuming architec­

ture and protocol independence. The nonsharing-related figures are within the normal range of unipro­

cessor program behavior. The proportion of reads to writes only seems high, because the ratios include 

references to shared data. Ratios of reads to writes for private data are comparable to other studies (for 

example, [Smit85]), for three of the traces (2.6 for CELL, 1.9 for SPICE and 2.6 for VERIFY). The only 

exception is TOPOPT (9.1). The shared data ratios are in line with previously published figures. In 

[Dare87] the proportion of shared accesses to total was .03, .14 and .12 for three scientific applications 

(molecular dynamics, Fast Fourier Transform and fluid dynamics, respectively). Ratios of shared to total 

data were .24 for SPICE, .32 for CELL, and .42 for TOPOPT and VERIFY. The _figures for SPICE and 

CELL agree with the .27 average for three similar applications reported in [Agar88]. The higher propor­

tion of private to shared data for SPICE is probably attributable to accesses to local copies of read-shared 

data. The column headed "Shared Data Space" is the number of bytes allocated to all shared data. In all 

traces except SPICE, it is the amount of shared memory required to execute the program on the particular 

input used. SPICE was written in Fortran; therefore the shared space was statically allocated to fit inputs 

of varying sizes. 

Histograms for the length of the write runs and the number of external rereads are sho\VTI 
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Write Run Len!!th Histogram 
Traces 

Run CELL SPICE TOPOPT VERIFY 

Length % % % % % % % % 

Bins Write Writes Write Writes Write Writes Write Writes 

Runs Runs Runs Runs 

1 71.6 26.3 66.1 35.2 60.5 9.2 30.4 3.8 

2 13.9 10.2 21.5 22.9 10.9 3.3 43.7 11.0 

3 2.8 3.1 3.6 5.7 4.6 2.1 5.4 2.0 

4 2.1 3.1 4.0 8.6 7.3 4.4 4.7 2.4 

5 0.9 1.7 0.7 2.0 3.1 2.3 1.4 0.9 

6 0.4 1.0 0.1 0.2 1.1 1.0 1.8 1.4 

7 1.1 2.8 0.4 1.4 1.1 1.2 0.7 0.6 

8 0.7 1.9 0.4 1.7 1.6 1.9 0.8 0.8 

9 0.9 2.9 0.0 0.0 0.5 0.7 0.2 0.3 

10 1.0 3.7 0.0 0.2 0.2 0.3 0.4 0.5 

11 1.1 4.5 2.6 14.9 0.4 0.7 0.2 0.3 

12 0.3 1.5 0.4 2.8 0.1 0.2 0.7 1.1 

13 0.4 1.9 0.0 0.1 0.1 0.2 0.5 0.8 

14 0.3 1.4 0.0 0.0 0.1 0.1 0.4 0.6 

15 0.0 0.0 0.0 0.0 0.4 0.9 0.5 1.0 

16 0.1 0.3 0.0 0.1 0.1 0.3 0.1 0.3 

17 0.1 0.4 0.0 0.0 0.2 0.4 0.2 0.4 

18 0.1 0.9 0.0 0.0 0.2 0.6 0.2 0.3 

19 0.1 1.0 0.0 0.0 0.4 1.2 0.0 0.1 

20 0.3 2.5 0.0 0.0 0.3 0.8 0.1 0.3 

>20 1.7 15.6 0.2 2.3 6.8 46.2 7.6 51.2 

Total 
Write 20959 15684 1864 5834 

Runs 
Avg. 
Write 2.36 1.84 5.13 6.37 
Run 
Length 
Total 

I 57063 29439 12231 46473 
Writes 

Table 4-4: Length of the Write Runs 

This histogram depicts the percentage of write runs that have a particular write run length and the percen­

tage of total writes that they contain. The traces were heavily biased toward write runs that contained 

only one write. With the exception of VERIFY, approximately two-thirds of the write runs for each trace 

had one write. Despite this, the average write run length for TOPOPT was long enough to suggest that a 

write-invalidate coherency protocol would be most appropriate for it 

in Tables 4-4 and 4-5. For two of the traces, CELL and SPICE, the write runs are short. Their 
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average write run lengths are 2.36 and 1.84 writes, respectively, and most of their write runs 

contain only one write (.72 for CELL; .66 for SPICE). In isolation, write runs this short argue 

for a write-broadcast protocol. However, the situation may change given the few external 

rereads. The average number of external rereads for CELL and SPICE is close to one (CELL = 

1.26, SPICE= .89), and a high percentage of their write runs were terminated by one or fewer 

rereads (CELL= 79%, SPICE= 99.5%).6 With the number of rereads this small, the invalida-

tions in a write-invalidate scheme would cause little additional coherency overhead in terms of 

invalidation miss bus traffic. However, both writ~ run length and the number of rereads are 

External Rereads Histo_nam 
Traces 

External Rereads Bins CELL SPICE TOPOPT VERIFY 

% % % % 

0 29.7 11.4 68.4 12.1 

1 49.6 88.1 9.3 76.1 

2 10.8 0.4 8.1 8.2 

3 3.3 0.1 2.7 3.6 

4 1.4 0.1 0.5 0.0 

5 0.8 0.0 0.2 0.0 

6 1.1 0.0 0.2 0.0 

7 0.9 0.0 0.0 0.0 

8 1.3 0.0 0.0 0.0 

9 0.8 0.0 0.0 0.0 

10 0.5 0.0 10.6 0.0 

11 0.1 0.0 0.0 0.0 

12 0.0 0.0 0.0 0.0 

Total External Rereads 17506 9575 886 2961 

A vg. External Rereads 1.26 0.89 1.44 1.03 

Table 4-5: Number of External Rereads Following a Write Run 

This histogram depicts the percentage of write runs that were followed by a particular number of external 

rereads. The graph indicates that a single or no external rereads terminated most of the write runs in all 

traces. Tnis means that there was a very low level of multiple processor contention for the shared vari­

ables, and argues for a write-invalidate coherency protocol. 

6 No external rereads occur when the end of a write run is the beginning of the next. In this case the terminat­

ing access is a write by the new processor. 
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sufficiently low that a clear protocol choice cannot be made. 

The average write run lengths for TOPOPT and VERIFY are longer (TOPOPT = 5.13, 

VERIFY = 6.37); and for VERIFY the write runs of length one constitute less than one third of 

the total. The average number of external rereads are as low as for the other two traces 

(TOPOPT = 1.44, VERIFY = 1.03), and the percentage of write runs ending with one or fewer 

rereads is also comparable (TOPOPT = 78%, VERIFY= 88%). The combination of the long 

write run length and the low number of external rereads for these traces indicates a match with a 

write-invalidate protocol. 

Results in [Agar88] are lower than the write run length figures reported here, presumably 

because of the finer granularity of parallelism in the programs. The average write run length for 

data in their three CAD applications is 1.5. Including operating systems references only 

increased the average write run length by 5 percent. 

Three factors indicate that contention in the traces is low. The first is the low number of 

external rereads mentioned above. Few rereads indicates that few processors are simultane­

ously accessing the same shared data. Second, the sharing ratio is also low (see Table 4-6). A 

low level of sharing indicates little contention. The ratio of write runs per total shared write 

addresses referenced averages 2. 7 during trace runs of 300,000 memory references per proces­

sor. The amount of computation in the applications is large relative to the frequency of write­

shared references, and, as established above, the pattern of access to these addresses is sequen­

tial. Therefore a 300,000 reference snapshot is not sufficient to capture repeated sharing of the 

data in the work queue that occurs over many iterations of the algorithm. This is a comment on 

the low level of sharing in the traces, rather than the insufficient size of the trace sample. If a 

larger section of trace were analyzed, the same level of sharing would have been exhibited: both 

the sharing ratio and the time period (measured in numbers of memory references) would 
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Sharing Ratio 

Trace Value Time Period 
(mem refs in OOO's) 

CELL 4.7 3,732 
SPICE 2.5 1,538 

TOPOPT 1.8 3,300 
VERIFY 1.9 3 604 

Table 4-6: Sharing Ratio 

The level of write sharing in the traces is reasonably low. This is indicated, in part, by the low number of 

write runs per shared write address (the sharing ratio) over a long period of time. Time is measured by 

the total number of memory references processed. Total write-shared addresses is a dynamic measure of 

those locations accessed during the period. 

Busvwaiters Histogram 
Traces 

Bin CELL SPICE VERIFY 
(%) (%) (%) 

0 86.6 81.8 99.3 

1 9.7 14.9 0.7 

2 2.7 2.4 0.0 

3 0.8 0.6 0.0 

4 0.2 0.3 0.0 

Total Busvwaiters 998 i 636 1097 

Table 4-7: Number of Busywaiters 

This histogram depicts the number times a processor was blocked from a critical section because another 

processor was executing in it The snapshot was taken when the lock was unlocked, and the count is of 

the number of processors busywaiting for it The figures indicate that there was almost no contention for 

the locks. At the very least almost 82 percent of all locks were unlocked with no other processor waiting. 

(TOPOPT is not depicted, because it does no locking.) 

increase.7 

Third, there are few processors busywaiting for locks when the lock is unlocked (see 

Table 4-7). Between 82 and 99 percent of unlocks occurred with no other processor wanting 

the lock. This behavior is partially determined by the programming paradigm. When the 

7 As mentioned in Chapter 3.5.3, one and two million reference snapshots of SPICE were also simulated, and 

the ratio of the sharing ratio to total memory references was almost constant across the three snapshot sizes. 
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programs first begin execution, there is unusual contention for the locks protecting the queue of 

work, since all child processes try to take their first unit of work simultaneously. However, only 

one process will obtain access to the queue at a time. Since each process does a comparable 

amount of computation, they will thereafter access the queue in the same order, spaced in time 

by the execution time of the critical section. This self-scheduling is disrupted by synchroniza­

tion barriers, which are used to separate phases in the computation. The disruption causes more 

busywaiting and therefore an increase in references to the locks. However, it occurs infre­

quently, particularly when compared to the longer periods of self-scheduling. 

Given all three factors (the low number of external rereads, the low sharing ratios and lit­

tle busywaiting), I conclude that the short write runs depicted in Table 4-5 result from the pro­

cessors' intention to write to the shared addresses only once, rather than the write sequences 

being interrupted by accesses from other processors. 

In summary, the sharing results of the simulations, independent of the architecture and 

coherency protocol, indicate sharing behavior more appropriate for write-invalidate protocols 

than write-broadcast for the traces examined. Write-invalidate's performance advantages stem 

primarily from the lack of contention for shared data (the small number of external rereads), and 

for two of the traces, the long length of the write run. TOPOPT and VERIFY had average write 

run lengths of 5.1 and 6.4, respectively, which allows a generous margin between the cost of 

one invalidation signal and a per-write bus broadcast within each write run. Of all the traces, 

SPICE and CELL were the best candidates for a write-broadcast protocol, because of th~ com­

bination of shorter write runs, slightly longer busywaiting sequences, and a higher sharing ratio. 

4.6. The Write Run Model 

Architectural modeling is a useful performar1ce technique for several reasons. First, it 

provides good intuition about the factors that affect computer performance. It reduces the com-
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plexity of the architecture to a few key components, and thus provides a means to easily analyze 

the interactions among them. The purpose of the write run model is to evaluate coherency over­

head; therefore it is restricted to coherency-related bus events. The model captures references 

to shared data that either degrade performance by causing additional bus traffic or are handled 

differently in the different protocols. It portrays write sharing activity only, because this is 

where the write-invalidate and write-broadcast protocols differ. It is assumed that both 

approaches have similar uniprocessor bus utilization, i.e., for private data and instructions. In 

addition, both are copy-back schemes. Therefore the model does not include these activities. 

A second advantage of modeling is that it produces results relatively quickly. By chang­

ing the model's parameter values, one can explore a large design space in a much shorter period 

of time than with trace-driven simulation. This convenience is especially important for mul­

tiprocessor studies, because the simulation time is proportional to the number of processors 

being simulated. For the studies in this dissertation, each architecture and protocol simulation 

required 7.25 hours of simulation time on an unloaded VAX 8600. 

The simple model of write sharing developed here is based on the write run characteriza­

tion. In the model, each state represents a different write run activity. A shared address is 

assigned to a state, based on its past write activity and current reference. When a shared address 

is accessed, a state transition occurs, as illustrated in the state diagram in Figure 4-2. A transi­

tion is made to the Different Write Run state by a write to a shared address by a CPU other than 

the current writer. The number of transitions is the count of write runs for the address. The 

Same Write Run state is entered each time a writer continues to write to the address. The 

number of transitions here is the total of all write run lengths for that address, excluding the first 

write in each run. The transition to End of Write Run is made by the first external read to the 

address by each CPU. The total is the sum of all such reads. 
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Figure 4-2: Model of Sharing Based on Write Runs 
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This finite state diagram reflects the model of sharing developed from the characterization based on write 

runs. A transition is made to the Different Write Run state by a write to a shared address by a CPU other 

than the current writer. The Same Write Run state is entered each time a writer continues to write to that 

address. The transition to End of Write Run is made by the first external read to the address by each 

CPU. By assigning a coherency protocol-dependent cost to each arc in the state machine, an approximate 

cost of sharing for a particular cache coherency protocol can be determined. 

The model can be used to quantify the intuitive conclusions of the last section. Relative 

coherency protocol performance is determined by assigning costs (in cycles) to each arc in the 

finite state diagram and multiplying by the transitions for each arc, summed across all shared 

addresses. The costs are a measure of the overhead of sharing traffic for a particular cache 

coherency protocol and are based on the timing constraints in the implementation of the SPUR 

multiprocessor. Cost values assume that the program is in sharing steady state. In sharing 
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steady state shared data is actively being shared by multiple processors. Its use in simulations 

ensures that statistics are not gathered during sharing startup, during which only one processor 

has cached the shared data and some coherency costs are not incurred. (Sharing steady state is a 

notion similar to cache steady state. Cache steady state also avoids a startup situation, i.e., ini-

tial cache filling, so that cold start misses are not included in cache miss ratio calculations.) 

Sharing steady state implies that (1) a shared access is not the first reference to that address by a 

processor, i.e., after the access, at least two caches have copies; and (2) each external read is 

actually a reread, i.e., the processor has previously accessed the address. The first stipulation 

insures that the number of bus updates in a write-broadcast protocol can be approximated by the 

write run length (the number of transitions to Different Write Run state plus those to Same 

Write Run state); the second that external rereads in write-invalidate protocols are equivalent to 

external reads (the number of transitions to End of Write Run). The arc costs for Berkeley 

Ownership and the Firefly are depicted in Table 4-8. 

Costs ofTransitions in the Write Run Sharing Model 

Arc Berkeley Ownership Fireflv 

Bus Operation Cost Bus Operation Cost 
( cvc!es) (cvcles) 

Write by a Different CPU invalidation signal 12 word transfer 11 

Write by the Same CPU no cost 0 word transfer 11 

First Per-processor Exter- block transfer 18 no cost 0 

nal Rereads 

Table 4-8: Costs of Transitions for Berkeley Ownership and firefly 

This table classifies coherency overhead by type of bus operation for Berkeley Ownership and the Firefly. 

For each state transition in the state diagram (Figure 4.2), the bus operation required and its costs in cy­

cles are depicted. All bus operations include cycles for address translation, bus arbitration, the bus opera­

tion and the appropriate snoop response, and snoop/cache controller interaction over updating the cache 

controller's copy of the state. The block is assumed to be eight words. The small time difference 

between the invalidation signal and a one-word transfer is caused by the update of both copies (snoop and 

cache controller) of the state for the former. The exact choice of cycle value is based on the implementa­

tion of the SPUR multiprocessor. 
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Figures 4-3 and 4-4 illustrate the model when applied to the write-invalidiate and write-

broadcast protocols. In each diagram, state transitions are depicted only for valid coherency bus 

operations. The coherency cost to Berkeley Ownership is the invalidation signal for the first 

write in a write run and the rereads for data that were invalidated. Total coherency cost is based 

on the sum of these bus operations. The coherency overhead of the Firefly protocol is the sum 

of all broadcast writes to shared data. As stated above, this can be approximated by the total 

length of all write runs. 

The model's position in the total methodological sequence is depicted in Figure 4-5. The 

parallel traces are input to a multiprocessor simulator, which is either architecturally abstract 

START 

Figure 4-3: Write Run Sharing Model for Berkeley Ownership 

This state machine diagram applies the write run model to the write-invalidate protocols, as represented 

by Berkeley Ownership. State transitions are only depicted for valid coherency bus operations. For 

write-invalidate they are invalidation signals to the Different Write Run state and external rereads to the 

End of Write Run state. 
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START 

BROADCAST 

BROADCAST BROADCAST 

Figure 4-4: Write Run Sharing Model for the Firefly 

This state machine diagram applies the write run model to the write-broadcast protocols, as represented 

by the Firefly. State transitions are only depicted for valid coherency bus operations. For write-broadcast 

they are bus updates to write-shared data. 
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Figure 4-5: Methodology 

~ coherency 
~ cycles 

This diagram depicts the trace methodology used for the sharing analysis and modeling, both based on 

the write run characterization. The details are explained in the text. 
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(for the sharing analysis) or very architecturally detailed (for the realistic simulations). The 

simulator's output are the write run metrics that were presented in section 4.5 (write run length, 

external rereads, sharing ratio and number of busywaiters), and other figures which will 

comprise the results in Chapters 5 and 6. The write run metrics from the sharing analysis pro-

vide the transition frequency inputs to the write run model; other inputs to the model are the 

protocol-specific arc costs and the protocol being modeled. The output produced by the model 

is total coherency overhead, measured in bus cycles. 

The results of the protocol comparison appear in Table 4-9. The absolute values of the 

cycle counts should not be taken literally, because of the architecture- and protocol-independent 

nature of the studies. What is important is the relative performance of the protocols for a partie-

ular trace. The figures of Table 4-9 support the conclusions of the last section, given SPUR cost 

assignments; namely, that for TOPOPT and VERIFY, write-invalidate protocols (as represented 

Cost of Berkeley Ownership& Firefly in the Write Run Sharin_g Model 

Trace Coherency Diff. Same End of Coherency Normalized 

Protocol Write Write Write Overhead to Berkeley 

Run Run Run Ownership 

(arcs) (arcs) (arcs) (c_ycles) 

CELL Berk. Own. 20959 28460 22060 648588 1.00 

Fireflv 543609 0.84 

SPICE Berk. Own. 15684 13167 8558 342252 1.00 

Fireflv 317361 0.93 

TOPOPT Berk. Own. 1864 7700 1276 45336 1.00 

Firefly 105204 2.32 

VERIFY 
I 

Berk. Own. 5834 31336 3064 II 125160 1.00 
I Fireflv 408870 3.27 

Table 4-9: Write Run Model Comparison of Berkeley Ownership & Firefly 

This table depicts the number of state transitions for each state in the write run model. The total number 

of cycles is obtained by multiplying the cost of each arc transition times the arc costs in Table 4-8. The 

bold entries indicate which of the protocols had better perfonnance for the particular trace, according to 

the architecture-independent write run analysis of sharing. 
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by Berkeley Ownership) obtained significantly better performance than the write-broad:· tst pro-

tocols (as represented by the Firefly). And, conversely, CELL and SPICE have less coherency 

overhead with write-broadcast, although the performance advantage is smaller. 

It should be pointed out that coherency cycles are sensitive to the overhead in the bus 

operations and the transfer size on a block read. In the SPUR implementation, both are high. 

For example, the cache controller was implemented assuming that the priority for using the 

cache belonged to the processor rather than the snoop. Therefore all arc costs include cycles for 

the snoop's negotiating to obtain use of the cache, and acknowledging that it has finished. In 

addition, the block transfer cost is based on an eight-word block size. If the arc costs had 

reflected a more optimized implementation, e.g., that used in the Firefly multiprocessor, the 

cycle cost would have been much lower.8 

4.7. Architecture-Dependent Simulations of Snooping Protocols 

I determined the accuracy of the write run model in evaluating the performance of 

coherency protocols in a real system by comparing the model's predictions with simulation 

results, using realistic architecture and protocol parameters. The architecture-independent 

assumptions of the sharing analysis (described in section 4.4.1) were dropped in favor of more 

specific premises: (1) the realistic simulations tracked the entire coherency block instead of the 

one-word unit of CPU access; (2) SPUR's 128K byte, direct mapped cache replaced the infinite 

cache, and its 32 byte block served as the.coherency block; (3) cycle times for bus op~rations 

were based on the SPUR implementation, rather than being a constant; (4) specific coherency 

protocols, Berkeley Ownership and Firefly,9 were implemented, and appropriate cycles 

reflecting the costs of their coherency operations replaced the assumption that cache coherency 

was free; and, (5) in general, the CPU, memory system and bus architecture closely matched 

8 The comparable figures for an implementation similar to the Firefly multiprocessor (using MicroVax IT's) 

would be 4 cycles for a word transfer, and, presumably, 4 for an invalidation and 11 for a block transfer, assuming 

the SPUR block size. 
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that of SPUR. 

The results of the simulations appear in Table 4-10. The data is the number of bus opera-

tions used to maintain coherency in sharing steady state, and the cycles required to carry them 

out. Again, the coherency cost (in bus operations) with Berkeley Ownership are the invalida-

tion signals and the reaccesses of invalidated data (corresponding to the sum of Different Write 

Run and End of Write Run figures in Table 4-9); for the Firefly, it is the total number of write-

broadcasts to shared data (the sum of Different Write Run and Same Write Run). 

The results indicate that the write-run model was a good predictor of coherency overhead, 

but for the write-broadcast protocols only (see Table 4-11). The percentage difference between 

Cost of Berkelev Ownership & Fireflv in Realistic Simulations 

Trace Coherency Diff. End of Diff. + Coherency Normalized 

Protocol Write Write Same Analysis to Berkeley 

Run Run Write Run Ownership 

[Inval. [In val. [Write 
Signal] Misses] Bdcasts.] 
Lares) _(arcs)_ iarcs) (cvcles) 

CELL Berk. Own. 10062 12507 275106 1.00 

Fireftv 49419 543609 1.96 

SPICE Berk. Own. 4643 3959 132954 1.00 

Fireflv 28937 318307 2.39 

TOPOPT Berk. Own. 7222 5728 225702 1.00 

Fireftv 9564 105204 .47 

VERIFY Berk. Own. 16400 25345 629628 1.00 

Fireftv 37156 408716 .65 

Table 4-10: Comparison of Berkeley Ownership & Firefly in Realistic Simulations 

The table contains the number of bus operations needed to maintain cache coherency, assuming a 

SPUR-like multiprocessor and sharing steady state, and using either Berkeley Ownership or the Firefly 

protocols. The results indicate relative coherency performance opposite to what was predicted by the 

write run model. Berkeley Ownership produced fewer coherency cycles than the Firefly for CELL and 

SPICE, but had more overhead for TOPOPT and VERIFY. (The bold protocol names indicate the proto­

col with the lower coherency overhead.) 

9 The implementation for the Firefly protocol includes the shared bus line. 
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Com_12arison of Realistic Simulation to Models 

Trace Coherency Architecture 
Protocol Independent 

Model 
(oercent) 

CELL Berkeley Ownership -135.76 
Firefly 0.00 

SPICE Berkeley Ownership -155.42 
Firefly 0.30 

TOPOPT Berkeley Ownership 79.91 
Firefly 0.00 

VERIFY Berkeley Ownership 80.12 
Fireflv -0.04 

Table 4-11: Comparison of Write Run Model to Realistic Simulation 

This table contains the percentage difference in total coherency cycles between the realistic simulations 

and the write run model, using the actual cycles as the base. For the Firefly, the total number of cycles 

required to carry out the operations matches those approximated by the model. However, for Berkeley 

Ownership, in which coherency operations take place on an entire cache block rather than a word, the ef­

fects of the cache block size outweigh those of the sharing pattern in the application. (The bold protocol 

names indicate the protocol with the lower coherency overhead.) 

the model's predictions and the actual Firefly cost was negligible for all traces. However, the 

model mispredicted coherency overhead for write-invalidate. The cycle discrepancy manifested 

itself in absolute amounts and in relative protocol performance. The absolute disparity ranged 

from 2.4 (CELL) to 5.0 (VERIFY) times. For CELL and SPICE the model forecasted a perfor-

mance loss for Berkeley Ownership relative to the Firefly (19.3 percent more coherency cycles 

for CELL, 7.8 percent more for SPICE); and a savings for TOPOPT anq VERIFY (56.9 and 

69.4 percent fewer coherency cycles, respectively). In both cases realistic simulations indicated 

the reve:-se. Berkeley Ow:1crship provided better coherency performance than the Firefly for 

CELL and SPICE (49.4 a..'1d 52.3 percent fewer cycles, respectively), but did less well for 

TOPOPT and VERIFY (114.5 and 54.1 percent more coherency cycles than Firefly). 

This discrepancy between the realistic simulations's bus operations and the model's state 

transitions occurs whenever the coherency block in the sharing analysis does not match that in 
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the real machine. In Berkeley Ownership, the unit of invalidation and reread is an entire cache 

block10
; and the block size in SPUR is 32 bytes. The effects of SPUR's large coherency block 

overshadow the coherency overhead due to the intrinsic sharing pattern in the applications. The 

Firefly results more closely correspond to those of the write run model prediction, primarily 

because the coherency block is identical in both the model and the realistic simulations. 

The effects of the coherency block produce either a savings or an additional coherency 

cost, depending on the inter-processor memory access pattern to words within the blocks. This 

pattern can be characterized by two distinct modes of behavior. In sequential sharing, a proces-

sor makes multiple writes to the words within a block, uninterrupted by accesses from other 

processors. lnfine-grain sharing, multiple processors contend for one or more words within the 

block, and the number of per-processor sequential writes is very low. 

Whether a program exhibits sequential or fine-grain sharing affects the amount of 

coherency overhead incurred. In write-invalidate protocols sequential sharing reduces 

coherency overhead by decreasing both the number of invalidations and the number of invalida-

tion misses. Conversely, when there is fine-grain sharing, the number of invalidations and 

invalidation misses is higher. For both types of memory reference behavior, the larger the 

coherency block, the more pronounced the effect on coherency overhead (see Chapter 5). 

Sequential sharing can benefit both the writer and the readers of a cache block containing 

a shared address (See Figure 4-6). For example, after an invalidation, a writing processor 
. 

possesses the only cached copy of the block. It pays the coherency overhead (the invalidation 

signal) for the first write to the block, but can update the remaining words without additional 

bus operations. In contrast, the write run model records a separate write run for each word 

within the block. Therefore the invalidating signal is counted for the initial write to each word 

10 Although coherency block and the cache block are synonymous for write-invalidate in these simulations, I 

shall continue to use the term "coherency block" to underscore its semantics. 
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Figure 4-6: Sequential Sharing 
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This figure illustrates how sequential sharing for shared data within a large coherency block can reduce 

coherency-related bus operations. In both the one-word and four-word diagrams each address is written 

by one processor and read by another. The penalty for the one-word coherency block is worse than that 

for the four-word, by a factor equal to their size difference. (The arrows move in the direction of time). 

in the block, rather than just once, and the spatial locality of reference for shared d~t~ within the 

coherency block is missed. An analogous situation exists for the readers. In this case the 

invalidation miss penalty is paid only for the first read to the block. All other reads are cache 

hits, and are free of coherency overhead. In CELL and SPICE, sequential sharing for the 

write-shared data within the 32 byte coherency block decreased both the number of invalida-

tions and rereads. 
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On the other hand, contention for a particular address within a block (fine-grain sharing) 

produces more invalidations that interrupt all processors' use of the data in the block and a 

corresponding increase in the number of invalidation misses to get it back. The greater the 

number of processors contending for an address, the greater the number of invalidation misses. 

The problem is exacerbated with a large block size, because contention can occur for any 

of the addresses in the block. Alternating writes by different processors to the different words 

within a block produce separate invalidations for each write (see Figure 4-7). The invalidations 

are responsible for a subsequent rise in invalidation misses. The invalidation misses occur each 

time a processor rereads any word in the block. The overhead is paid even when the processor 

reads an address that was not updated. 

Reads by different processors to the words within an invalidated block also contribute to 

the rise in invalidation misses (see Figure 4-8). Recall that an invalidation to one word in a 

block causes all other words to be nullified; when the subsequent reads to these addresses are 

issued by different processors, additional read misses are incurred to get them back. 

In the write run model there are separate write runs for each word in the block, and the 

writes to one address do not affect the reads to another. In fine-grain sharing that affects both 

readers and writers, accesses that are read misses in the realistic simulations are considered hits 

in the modeling analysis, and consequently are not counted as coherency overhead. 

Fine-grain sharing was prevalent in the remaining two traces, TOPOPT and VERIFY . 
. 

Recall that the average write run length for shared addresses in TOPOPT and VERIFY was 5.13 

and 6.37, respectively, higher than the other two traces by a substantial margin. With the one-

word coherency block of the sharing analysis, only the first of the writes in these runs caused an 

invalidation. However, in the realistic simulations most of the writes caused invalidations, 

because of the interleaved (by processor) accesses within the larger (32 byte) coherency blocks. 



1 Word Coherency Blocks 

hit (q>uO) hit (q>uO) hit (cpuO) 

0 inv(q>ul) 
0 ----? 0 ----7 0 

CIJ~~ inv (cpu!) 

m 
0 
----~lxl inv (cpu!) 

[%] 
no invalidation misses 

4 Word Coherency Block 

3 invalidation misses 

Figure 4-7: Fine Grain Sharing (for Writers) 
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This illustration of fine-grain sharing depicts the effects of inter-processor write activity for some ad­

dresses in a coherency block on others. In the one-word coherency block (used in the write run model) 

the writes to addresses B through D do not affect reads to A; in the four-word coherency block they cause 

invalidation misses for each reread, because they invalidate the entire block. (The arrows move in the 

direction of time). 

4.8. The Coherency Block Write Run Model 

The comparisons of coherency overhead between actual simulations and the architecture-

and protocol-independent write run model have demonstrated that the model is too general for 

write-invalidate protocols. In order to obtain model predictions that more accurately reflect 

actual coherency costs, I incorporated the size of the coherency block into the otherwise 

architecture-independent write run model. In the new coherency block model, the unit of (write 
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Figure 4-8: Fine Grain Sharing (for Readers) 

This diagram of fine-grain sharing demonstrates inter-process read contention for different addresses 

within a coherency block. For large coherency block sizes, the contention causes additional invalidation 

misses. With the one-word coherency block of the write run model, the invalidation misses become 

cache hits. (The arrows move in the direction of time). 

run) analysis is the entire coherency block, rather than the one-word CPU access . .All other 

assumptions of the architecture-independent model still remain in effect. 

The coherency block write run model produced much more accurate approximations. 

First, for all traces the model correctly predicts the protocol with less coherency overhead 

(Berkeley Ownership for CELL and SPICE, and the Firefly for TOPOPT and VERIFY) (see 

Table 4-12). Furthermore, the absolute magnitude of the predictions is quite close to actual per-
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Cost of Berkeley Ownership & Firefly 

in the Coherencv Block Write Run Sharing Model 

Trace Coherency Different Same End of Coherency Normalized 

Protocol Write Write Write Overhead to Berkeley 

Run Run Run Ownership 

(arcs) (arcs) (arcs) (cvcles) 

CELL Berk. Own. 10091 39305 12447 345138 1.00 

Firefly 543356 1.57 

SPICE Berk. Own. 4493 24358 3760 I 121596 1.00 

Firefly 317361 2.61 

TOPOPT Berk. Own. 7957 1607 5164 188436 1.00 

Fireflv 105204 .59 

VERIFY Berlc Own. 16912 20258 26094 672636 1.00 

Fireflv 408870 .61 

Table 4-12: Coherency Block Write Run Model Comparison 

of Berkeley Ownership & Firefly 

This table depicts the number of occurrences of each arc in the coherency block write run model. The to­

tal number of cycles is obtained by multiplying the frequency of each arc transition and the arc costs in 

Table 4-8. The bold entries indicate which of the protocols had less coherency overhead; these predic­

tions match the outcome of realistic simulations. Notice that for the Firefly the total number of cycles is 

almost identical to the architecture-independent results. For both models the total number of bus opera­

tions is the same, although apportioned differently between the Different Write Run and Same Write Run 

states. Under write-broadcast, the transitions to both states produce the same bus operations. Therefore 

the cost of all operations and consequently total coherency overhead is identical in both models. 

Comparison of Realistic Simulation to Models 

Trace Coherency Architecture Coherency Algorithmic Finite 

Protocol Independent Block Use Cache 

Model Model Variation Variation 

(oercent) (oercent) (oercent) (oercent) 

CELL Berk. Own. -72.29 8.32 4.80 4.47 

Firefly 0.00 

SPICE 
I 

Berk. Own. -154.20 9.69 7.37 2.86 

: Firefly 0.30 ' 

TOPOPT Berk. Own. 79.91 16.51 -1.17 -2.32 

Firefly 0.00 

VERIFY Berk. Own. 81.11 -1.54 -2.83 
I 

-2.83 
I 

Fireftv -0.04 

Table 4-13: Coherency Overhead: 

Comparison of Realistic Simulations to the Write Run Models 

This table compares coherency overhead predictions of progressively more architecturally detailed write 

run models to the actual overhead in the results from realistic simulations. The results are discussed in 

detail in Section 4-9. The bold font indicates which protocol had the lower coherency overhead in the 

realistic simulations. 
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fonnance (see the second column of figures in Table 4-13). The percentage difference between 

the coherency block model's results and those of actual simulations is 8.32 and 9.69 percent for 

the traces with sequential sharing (CELL and SPICE, respectively) and 16.51 and -1.54 percent 

for those that exhibited fine-grain sharing (TOPTOP and VERIFY). 

The revised write run metrics also support the coherency block model's relative protocol 

performance predictions. As mentioned above, CELL and SPICE have fewer coherency-related 

cycles with Berkeley Ownership than Firefly. This is reinforced by their longer average write 

run lengths (4.90 for CELL and 6.42 for SPICE. as opposed to 1.20 for TOPOPT and 2.20 for 

VERIFY) and a broader write run length distribution (see Table 4-14). The majority of write 

runs still tenninate with zero or one external rereads (see Table 4-15). The exact figures are 

76.1 percent for CELL, 92.6 percent for SPICE, 89.7 percent for TOPOPT and 67.3 percent for 

VERIFY. Like the original architecture-independent write run model, these figures are low 

enough that the write run length, rather than the number of external rereads, detennines the 

model's relative protocol predictions. 

The new sharing ratios for TOPOPT and VERIFY are extremely high (28.5 and 21.5, 

respectively), indicating considerable contention for the write shared data (see Table 4-16). 

Since write-broadcast protocols perfonn well during periods of contention, it is not surprising 

that both the coherency block model and the realistic simulations indicate that the Firefly is the 

better protocol for these traces. For three of the traces, the number of busywaiters is identical to 

the architecture-independent results. The lone exception is CELL, whose figures differ, but 

only slightly. (The percentage of locks that were unlocked with no other processor waiting 

dropped from 86.6 to 85.8 percent.) The similarity in lock activity between the two models 

demonstrates that locks have not been allocated to the sarne coherency block. Tne very sequen­

tial sharing for locks implies that the contention exhibited by the high sharing ratio for 

TOPOPT and VERIFY pertains only to the applications shared data. (In fact, recall that 
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Coherencv Block Write Run Len!!th Histogram 

Traces 

Run CELL SPICE TOPOfYf VERIFY 

Length % % % % % % % % 

Bins Write Writes Write Writes Write Writes Write Writes 

Runs Runs Runs Runs 

1 28.0 5.1 l1.8 1.5 91.5 74.0 79.3 34.7 

2 25.8 9.3 31.5 8.0 6.8 11.1 14.4 12.6 

3 10.3 5.6 0.8 0.3 1.1 2.6 2.4 3.2 

4 19.3 13.9 14.5 7.3 0.2 0.7 1.0 1.8 

5 2.2 2.0 1.2 0.8 0.0 C.2 0.7 1.6 

6 3.0 3.3 7.1 5.4 0.0 0.1 0.6 1.7 

7 1.2 1.6 0.0 0.0 0.0 0.2 0.2 0.5 

8 2.9 4.2 17.8 18.1 0.0 0.0 0.1 0.5 

9 0.7 1.1 0.0 0.0 0.0 0.2 0.1 0.2 

10 0.7 1.3 0.1 0.2 0.0 0.0 0.1 0.5 

11 0.2 0.4 0.0 0.0 0.0 0.1 0.0 0.0 

12 0.9 2.0 2.2 3.4 0.0 0.0 0.2 1.2 

13 0.1 0.3 0.0 0.0 0.0 0.1 0.1 0.3 

14 0.3 0.9 0.8 1.5 0.0 0.0 0.0 0.2 

15 0.1 0.3 0.0 0.0 0.0 0.3 0.0 0.2 

16 0.3 0.8 4.3 8.7 0.0 0.0 0.0 0.2 

17 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 

18 0.2 0.7 0.6 1.3 0.0 0.0 0.0 0.1 

19 0.1 0.2 0.0 0.0 0.0 0.2 0.0 0.1 

20 0.4 1.4 0.3 0.8 0.0 0.0 0.0 0.3 

>20 3.1 33.8 6.9 24.2 0.2 7.5 0.4 35.9 

Total 
Write 10091 4493 7957 16912 
Runs 
Avg. 
Write 4.90 6.42 1.20 2.20 
Run 
Length 
Total 55969 35403 9837 38724 
Writes 

Table 4-14: Length of the Coherency Block Write Runs· 

This histogram depicts the percentage of write runs that have a particular write run length for the 

coherency block model, assuming a 32 byte coherency olock. Unlike the architecture-independent 

ll:odel, the programs with sequential sharing (CELL and SPICE) have longer average write run lengths, 

and their distribution of write run lengths is spread more evenly. The histogram also contains the percen­

tage of total writes that are in a write run of a given length. The percentages support the average write 

run length data. 
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Coherencv Block External Rereads Histogram 
Traces 

External Rereads Bins CELL SPICE TOPOPT VERIFY 
% % % % 

0 19.3 8.0 81.2 7.8 

1 56.8 84.6 8.5 59.5 

2 12.8 2.6 2.7 16.2 

3 4.3 2.3 1.2 8.0 

4 2.0 2.5 0.6 4.2 

5 1.3 0.0 1.1 2.3 

6 1.3 0.0 0.6 1.0 

7 0.8 0.0 1.2 0.5 

8 0.8 0.0 0.1 0.3 

9 0.4 0.0 0.1 0.2 

10 0.2 0.0 2.7 0.0 

11 0.0 0.0 0.0 0.0 

12 0.0 0.0 0.0 0.0 

Total External Rereads 9194 I 3524 7841 16515 

A vg. External Rereads 1.35 1.07 0.66 1.58 

Table 4-15: Number of External Rereads Following a Write Run 

(Coherency Block Model) 

This histogram depicts the percentage of write runs that were followed by a particular number of external 

rereads. Like the architecture-independent write run model, the average number of external reads is low 

and a single or no external rereads terminates most of the write runs in all traces. Again, this means that 

there was little or no contention for the shared variables, and, in isolation, argues for a write-invalidate 

coherency protocol. 

Sharin!! Ratio 

Trace Value Time Period 
(mem refs in OOO's) 

CELL 7.4 3,732 
SPICE 4.6 1,538 

I TOPOPT 28.5 3,300 
II VERIFY 21.5 3.604 

Table 4-16: Sharing Ratio (Coherency Block Model) 

Contention for the write shared addresses in the TOPOPT and VERIFY is fairly high. This is in sharp 

contrast to the almost lack of contention predicted by the architecture-independent model (1.8 and 1.9, 

respectively). Again, the time period is measured by the total number of references processed by each 

processor. 

TOPOPT uses no locks.) 
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4.9. Refining the Model 

Although the coherency block write run model greatly improved the accuracy of the 

coherency overhead cycle predictions, they are not yet acceptably close to actual values. Addi-

tional improvements can be realized by further refining the model. The changes involve a more 

detailed cost analysis for the transition to the Different Write Run state and dropping the infinite 

cache assumption. 

Recall that total coherency overhead for both write run models was calculated by multi-

plying the number of state transitions by protocol-specific arc costs. The state transitions sig-

nify only that a change of write run state took place, without stipulating the type of bus opera-

tion that implemented them. The arc costs assume the bus operation that occurs in the most 

common case. For write-invalidate protocols, this is an invalidation signal to the Different 

Write Run state, a data transfer to the End of Write Run state and no bus operation to the Same 

Write Run state. In realistic simulations, these bus operations do not always take place, both 

because of algorithmic program behavior and the constraints of a finite cache. 

The stipulation that an invalidation signal be the cost of a transition to the Different Write 

Run state is based on the assumption that write references result in cache hits. When the writes 

produce cache misses, the actual cost is that of the more expensive data transfer. Under write-

invalidate protocols, write misses to shared data have several causes. First, the algorithm of the 

program may dictate that the program's first access to the data is a write, rather than a read. 11 

Second, invalidations issued by other processors will nullify cache blocks: And finally, blocks 

11 Even if the program's first access to the data is a read, the operating system's handling of page faults could 

cause the first cache access to a shared address to be a write. For example, when the virtual space for the program is 

first allocated, the kernel could zero-fill the heap pages in user space. These writes would generate data transfers 

rather than invalidation signals. If an address was still in the cache when the program referenced it, its cache block 

would already be private, and the program's reads and writes would cause no additional bus operations. 

Other scenarios can be constructed in which different coherency operations are generated. In Sprite [Oust88], 

the (virtual) pages are zero-filled in kernel space, flushed from the cache, and then mapped to user space. In this case 

a program's first read to shared data will miss in the cache, and the subsequent write will produce an invalidation sig-

nal. 
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may be evicted through block replacements. Although the caches used in the realistic simula­

tions are moderately large relative to the size of the working set of the programs, block replace­

ments do have a small effect on coherency overhead. Block replacements also cause additional 

cycles to be charged for transitions to the Same Write Run state. Here either an invalidation 

signal or a data transfer replaces the assumed no bus operation. 

Table 4-13 illustrates the progression of coherency-related bus cycles, as the coherency 

block model is altered to account for the above factors. In all cases the models' coherency 

overhead cycles were compared to those in the realistic simulations. The first two columns 

indicate the percentage differences for the architecture-independent and coherency block 

models. Both model figures reflect coherency cycles, based solely on the number of transitions 

and the general arc cost assumptions. The column "Algorithmic Use Variation" uses a weighted 

average between invalidation signals and data transfers for the cost to the Different Write Run 

state. For the latter operation write runs began with write misses, caused either by a program's 

first access to shared data being a write or invalidations by other processors. The fourth 

column, "Finite Cache Variation", includes the effects of block replacements in the 128K byte 

cache. For this model, additional cycles are charged for data transfers on transitions to the Dif­

ferent Write Run state and both data transfers and invalidation signals for transitions to the 

Same Write Run state. 

Because the coherency block model abstracts out the differences in the costs of several 

transitions, it tends to give optimistic predictions of actual protocol behavior~ For the same 

write run transition frequencies, total coherency overhead, measured by the type of bus opera­

tion that actually occurred (in the realistic simulations), is higher. Therefore, as the variations 

are progressively included in the model, the percentage difference between the actual coherency 

cost and the model predictions should become increasingly less. This is the case for the traces 

with sequential sharing, CELL and SPICE. In reality, coherency overhead figures are perturbed 

by additional factors not represented by the detailed cost analysis of the state transitions. One 
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example is the bus arbitration protocol. All write run model variations assume a round robin 

protocol that ensures equal access to the bus for all processors. On the other hand, the NuB us 

protocol used in the realistic simulations guarantees fair access within a wave of requests, but 

gives higher wave entrance priority to certain processors at high bus utilization levels. In par­

ticular, the CPUs with the lowest two identification numbers will each be shut out of approxi­

mately half of the waves [Vem88]. Biasing the order of processor bus procurement in this way 

changes the global sequence of shared references. The consequence of the unfairness could be 

that processors with greater access to the bus will be able to process all references, including 

those to shared data, at a faster rate than those processors with a lower priority to the bus. They 

will therefore be able to complete more accesses to shared data between intervening references 

by other processors. Consequently, they will tend to have fewer write runs with longer average 

write run lengths. Both factors will tend to decrease the total number of coherency overhead 

cycles for write-invalidate protocols, perhaps even below the models' predictions. 

This very likely explains the results for VERIFY, where the coherency block model 

predicted more overhead than was reported in the realistic simulations. Once the lower model 

base was established, the model improvements from the detailed state transition analysis and 

the finite cache widened the gap. In VERIFY's realistic simulation, bus utilization was 96.6 

percent; therefore the biased bus arbitration described above would apply. Write run metrics for 

the traces also support this analysis; on average there were fewer write runs in the realistic 

simulations tha..'1 for the coherency block model, and the average write run length was longer. 

TOPOIT also had fewer and longer write runs in the actual simulations. However the 

actual coherency overhead cycles were not close enough to those in the models to cause the 

latter to dominate, until the model that incorporated a detailed breakdown of the tr:msitions that 

began write runs (the algorithmic use variation). Here the large drop in the comparison figures 

between the coherency block and algorithmic use variation (16.51 to -1.17 percent) is attribut­

able to the large proportion of write runs that began with a write (84 percent). In the 
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algorithmic use variation these transitions incurred the cost of a full data transfer. 

4.10. Chapter Summary 

The results in this chapter have demonstrated the limitations of simple, architecture­

independent sharing models in accurately predicting coherency overhead for write-invalidate 

protocols. Actual performance for these protocols depends on several architecture- and 

program-dependent factors, the most important of which is the coherency block. When the 

coherency block is larger than the one-word unit of access in the architecture-independent 

model, the memory access pattern to the shared data within the block dominates the effects of 

the sharing pattern intrinsic to the algorithm of the program. A savings in coherency overhead 

occurs when the memory access pattern is one of sequential sharing; and additional coherency 

cycles result with fine-grain sharing. 

When the size of the coherency block is incorporated into the write run model, model 

predictions reduce the relative error (between the model and realistic simulations) by a factor of 

4.8 to 52.7, depending on the trace. Model predictions come within an average of 9 percent of 

actual simulations. The coherency unit model is more accurate, because it includes two factors 

that are crucial to modeling parallel program activity. First, it reflects locality of reference to 

shared data in the workload through the write run characterization. Second, it bases the locality 

analysis on the size of the coherency unit. Incorporating the coherency unit into the model 

places a limit on the per-processor locality. The limit reflects the inter-processor activity for 

shared data that occurs in a running multiprocessor. 

Integrating all factors (the coherency block, a detailed analysis of the state transitions that 

begin a write run and a finite cache) produced model predictions that were close to realistic 

simulations. The final discrepancies ranged from 2.3 to 4.5 percent. The cost of incorporating 

the factors is the necessity to redo the modeling simulations should any of the factor values 

change. 
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The original, architecture-independent model is still useful for several reasons. First, it 

provides accurate predictions for write-broadcast protocols. This is primarily because the size 

of their coherency block matches the unit of analysis in the model and all coherency-related bus 

operations have the same cost. In addition, cache misses have no effect on coherency overhead 

for write-broadcast, because updates to shared data are only broadcast on cache hits. When a 

block is replaced or a write run begins with a write, the block is read into the cache before the 

broadcast is issued. The same amount of coherency overhead is incurred, if the block had not 

been replaced or if the write run had begun with a read. The infinite cache in the architecture­

independent model perturbs coherency overhead for write-broadcast slightly, in that it guaran­

tees that once data is shared, it remains shared. In the realistic simulations shared data is occa­

sionally replaced, and not referenced. The shared bus line is eventually dropped, and write 

broadcasts are discontinued. Infinite cache effects would have been much more pronounced had 

the cache in the realistic simulations been smaller. 

Secondly, by concentrating totally on write run activities, the architecture-independent 

write run model highlights the differences between the two types of protocols and explains how 

different patterns of sharir1g affect relative protocol performance. Third, the architecture­

independent model was used to isolate the factors that turned out to be important in modeling 

write-invalidate coherency costs, previously mentioned. And lastly, it requires only one simula­

tion per trace, for all cache architecture parameters. 
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5.1. Introduction 

The Effect of Sharing 

on the Cache and Bus Performance 

of Parallel Programs 

The cache behavior of uniprocessor programs, in particular, the effect on performance of 

changing cache parameters, has been extensively analyzed (e.g., 

[Agar88, Alex86, Good87, Hill87, Przy88, Smit85, Smit87]). For small and medium sized 

caches, increasing the cache size causes a drop in the miss ratio that is substantial enough to 

reduce the effective memory access time, despite the additional cache access time of the larger 

caches. For very large caches, the miss ratio still falls; however, its value is quite low. The 

resulting high hit ratio, multiplied by the longer cache access time, causes the effective access 

time to :ise. The miss ratio trend for increasing block size is not as consistent. A larger block 

size llso reduces miss ratios, but only up to a cenain size. After reaching this memory pollution 

point, miss !'atios begin to climb. But even the declining miss ratio does not always increase 

performance, because of the additional bus traffic latency caused by the larger transfer block. 

Miss ratios and bus utilization of parallel programs should be higher than those of Wlipro-

cessor programs, because additional bus traffic is required to maintain coherent caches. This is 
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a critical performance issue in single-bus multiprocessor design, since bus bandwidth is the lim­

iting performance factor in such a system. If the cache and bus behavior of parallel programs, 

varying across cache and block sizes, is radically different from uniprocessor programs, then 

new rules of thumb are needed to design memory systems for multiprocessors. 

The goal of this chapter is twofold: first, to analyze the cache and bus behavior of parallel 

programs running under write-invalidate coherency protocols; and second, to compare this 

behavior to that of their uniprocessor counterparts. The research shows that parallel programs 

do have different cache and bus behavior than uniprocessor programs; and that it is the refer­

ences to shared data that are responsible for the difference. The results are most dramatic when 

increasing block size. Here the proportion of sharing-related misses to total misses rises. The 

consequence is a higher miss ratio than for uniprocessor programs. For some traces the effect 

was great enough to cause miss ratios to rise with incr.:asing block size, rather than fall. Shar­

ing also worsens the miss ratios when increasing cache size; again, the effect is more pro­

nounced with larger cache sizes. For most programs sharing-related bus traffic dominates bus 

utilization cycles with large caches (128K byteS and up) and all block sizes studied (4 to 32 

bytes). At these cache configurations it is the sharing traffic that creates the multiprocessor bus 

bottleneck. 

These results indicate that larger caches and block sizes, the traditional techniques for 

improving cache performance, are less effective with parallel programs than uniprocessor pro­

grams. However, additional performance improvements can still occur using .software tech­

niques. For the programs analyzed, the amount of sharing overhead depended on the intra­

block memory reference pattern for shared data. Programs that exhibited sequential sharing 

performed better than those with fine-grain sharing. If programmers (or compilers) are aware of 

memory reference patterns when writing (generating) parallel code, they can anain better pro­

gram performance by altering the memory organization of the shared data. 
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The remaffider of the chapter contains the studies of the cache (section 5.2) and bus (sec-

tion 5.3) behavior of parallel programs, each investigating the effects of changing both block 

and cache size. Section 5.4 summarizes the results; the summary discusses the implications of 

cache and bus performance of the parallel programs, both for multiprocessor cache design and 

software design. 

5.2. The Effect of Sharing on Miss Ratios 

5.2.1. Varying Block Size 

Cache miss ratio studies of uniprocessor programs have indicated that for a fixed size 

cache, the miss ratio initially drops as the block size of the cache increases 

[Agar88, Alex86, Good87, Hill87, Przy88, Smit87]. The decline is due to improved cache hits 

because of locality of reference. However, as block size continues to increase, the decrease in 

the miss ratio tapers off. For small and medium sized caches, those in the range of 4K bytes to 

16K bytes, the miss ratio decline may terminate at some particular block size (in [Good87], it is 

32 bytes and 128 bytes, respectively), after which the miss ratio begins to rise. The termination 

is known as the memory pollution point. 1 As cache size grows, the pollution point shifts to an 

increasingly larger block size. For 128K byte caches, [Agar88] reports that the pollution point 

is not reached with block sizes up to 32 bytes (the configurations in this study). Therefore, for 

uniprocessor programs, miss ratios should continue to decline until that point. 

Analysis of the parallel traces indicates that their miss ratios do not always follow the 

trend of uniprocessor programs (see Figure 5-l). CELL and SPICE consistently exhibit the 

expected decline; but the miss ratios for TOPOPT and VERIFY actually increase. Their rise is 

1 For a fixed sized cache, a larger block size results in fewer cache lines. The pollution point OC"'UIS beca!lSe 

memory references take place to noncontiguous data that do not reside in the cache, while contiguous, but l.mfefer­

enced, data remain in the larger block. Until the pollution point is reached, the larger block size implicitly prefetches 

data that will be referenced in the near future. 
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Figure 5-l: Miss Ratio 

Parallel traces exhibit two miss ratio trends as 

block size increases. Miss ratios decline for pro­

grams with sequential sharing (CELL and SPICE); 

however, for programs with fine-grain sharing 

(TOPOPT and VERIFY), they are dominated by 

the misses caused by intra-block contention for 

shared data, which produce the rising curves. (All 

block size graphs are for a 128K byte cache.) 
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The shared miss ratios (misses to shared data di­

vided by total references to shared data) follow 

the trend of the total miss ratios, but have a value 

that is 5 to 7 times higher. The higher figures 

reflect the poorer locality of shared data. 

slight, and, for one of the traces, not continuous across all block sizes. However, their behavior 

was completely unexpected, given the uniprocessor literature. Miss ratios for the shared refer-

ences only,2 depicted in Figure 5-2, indicate almost identical behavior, but at higher values. 

Due to the poorer locality of reference for shared data, miss ratios for shared data were 5 to 7 

times greater than total miss ratios, depending on the particular trace and block size. 

Eliminating invalidation misses from the miss ratio calculations3 leaves a uniprocessor 

component that approximates uniprocessor miss ratios. The uniprocessor miss ratio component 

2 The shared miss ratio is the number of misses to shared riata divided by total references to shared data. 

3 The new calculation is: total misses - invalidation misses 
total refs 
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for all traces corroborated results from previous cache studies of uniprocessor programs. In 

other words, the uniprocessor miss ratio component declined as block size increased, and the 

marginal rates of decline also decreased with block size (see Figure 5-3). The values were less 

than the multiprogramming miss ratios reported in [Agar88]; however, this is to be expected, 

since these traces contain applications references only, and the traces in [Agar88] include 

operating systems references. The uniprocessor miss ratio components for SPICE are most typ-

ical of the results of the composite uniprocessor applications workload reported in [Good87]. 

The predictable trend of the uniprocessor component of the miss ratios suggests that it is 

the invalidation misses that are responsible for the variable miss ratio behavior of the parallel 
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The ratio of invalidation mlsses to total misses in­

creases as block sizes increase. At larger block 

sizes the invalidation misses of three of the traces 

comprise a substantial portion of the total; and for 

TOPOPT they dominate miss ratio behavior. (The 

numbers are the geometric mean of the ratio of in­

validation to total misses, across all processors.) 
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programs. A more detailed examination reveals that two interacting factors determine the miss 

ratio trends (see Figure 5-4). First, as block size increases, invalidation misses become a larger 

fraction of total misses. Therefore they become an increasingly significant determinant of miss 

ratio behavior. The second factor is the high value of this fraction at the larger block sizes. At 

small block sizes, the uniprocessor misses dominate. However, at larger block sizes the number 

of invalidation misses is either a substantial (CELL, VERIFY and SPICE) or overwhelming 

(TOPOPT) proportion of the total. The combination of these factors forces the miss ratios to 

follow the trend of the invalidation misses as block size increases. For many block sizes the 

invalidation misses are the single most determining factor in miss ratio behavior. 

The traces exhibited two distinct invalidation miss trends.4 For programs whose memory 

reference pattern for shared data is dominated by sequential sharing, such as CELL and SPICE, 

the number of invalidation misses declines as block size is increased (see Figures 5-5 and 5-6). 

Shared data in these traces have good spatial locality of reference. Each processor tended to 

read several contiguous words in succession, all of which had been previously invalidated. 

With the 32 byte block size, the invalidation miss penalty was incurred only for the first of eight 

words; with smaller blocks, for example, 4 bytes, it was incurred for each. Because the invali-

dation miss trend reinforced that of the uniprocessor miss ratios, the miss ratios declined. 

SPICE, in particular, had good locality of reference. Its shared data structures had been sized to 

the ELXSI 6400 64 byte cache block. explicitly to avoid fine-grain sharing for addresses within 

the block. Therefore for block sizes considered in this study (up to 32 bytes), little contention 

was observed. 

For programs with fine-grain sharing within a block, such as TOPOPT and VERIFY (see 

Figures 5-7 and 5-8), the declining uniprocessor miss ratio was offset by the increase in the 

number of invalidation misses and their large proportion within total misses. Invalidation 

4 The write run results in [Egge88] and Chapter 4, and tracking cache block behavior with the simulator corro­

borate the difference in behavior between the two groups of traces. 
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The memory reference pattern of shared data in both CELL and SPICE is one of sequential sharing. 

Therefore invalidation and uniprocessor misses both decline, producing miss ratio curves that are similar 

to uniprocessor programs. 

misses had the largest effect on TOPOPT, and for two reasons; first, the trace had the most 

fine-grain sharing, and second, it had a low uniprocessor miss ratio, because its working set fit 

into the 128K byte cache. 

A short note should be made about the miss ratio behavior of the components of shared 

data, i.e., locks and the shared applications data they protect. For the traces with sequential 

sharing, the applications data were responsible for the high shared miss ratios depicted in Fi£Ure 

5-2. Miss ratios for the locks were 2.0 to 4.9 times lower for CELL and 2.4 to 15.8 times lower 

for SPICE, as block size increased. This corroborates the results in Chapter 4, sections 4.5 and 

4.8, that indicate that there was little contention for locks. Greater lock contention would have 

resulted in more invalidations to them and consequently additional rereads and a higher lock 

miss ratio. In addition, the lock miss ratio was impervious to increases in block size, indicating 

that the good locality of reference to shared data in CELL and SPICE was due to the 
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applications shared data, rather than the locks. The lock miss ratio for VERIFY was more sen-

sative to changes in block size, rising rapidly as block size increased. At 4 bytes it was one-

ninth the miss ratio of the applications shared data; at 32 bytes both were comparable. 

5.2.2. Varying Cache Size 

The benefits of increasing cache size on miss ratios of uniprocessor programs are well 

known. Numerous trace-driven studies over a variety of workloads have all confirmed that the 

miss ratio drops as cache size is increased, but that the improvements diminish for large caches 

[Agar88, Alex86, Good87, Hill87, Przy88, Smit87]. 
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TOPOPT is the trace in which the invalic!ation 

misses had the most effect and for two reasons: 

first, it exhibited the most intra-block fine-grain 

sharing; and, second, its uniprocessor miss ratios 

were low, because the working set fit into the 

128K byte cache. 
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Figure 5-8: Oassification of Misses 
for VERIFY 

Although VERIFY's memory reference pattern 

was one of fine-grain sharing, the uniprocessor 

misses were proportionately high, particularly at 

small block sizes. Therefore the miss ratio at first 

declined, then rose. (Since the individual proces­

sor figures for VERIFY were widely skewed, the 

ratios of invalidation misses to total misses do not 

match the geometric means in Figure 5-4.) 
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Shared programs do not experience the same miss ratio benefits of increasing cache size. 

While it is true that their uniprocessor-related misses decline with larger caches, their invalida-

tion misses either rise or, at best. remain constant. The combination produces a miss ratio that 

declines with cache size, but is higher than for comparable uniprocessor programs. 

The parallel traces support this analysis. For all traces, miss ratios decline with increasing 

cache size (see Figure 5-9), and total miss ratios are higher than their uniprocessor components 

(see Table 5-1). The discrepancy increases with cache size, because the uniprocessor miss ratio 

declines more steeply. The exact figures range from 1.02 to 2.2 higher for SPICE, 1.1 to 2.5 

higher for VERIFY, 1.1 to 4.7 higher for CELL and 1.7 to 15.4 higher for TOPOPT, as cache 
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Figure 5-9: Miss Ratio 

Increasing the cache size causes the miss ratio for 

parallel programs to decline. However, the miss 

ratio is higher than for uniprocessor programs, be­

cause of invalidation misses. (All cache size 

graphs assume a 32 byte block.) 
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Figure 5-10: Oassification of Misses 
forTOPOPT 

Of all the traces TOPOPT has the most fine-grain 

sharing within the cache block. The effects of that 

intra-block contention are manifested by the dis­

tortion to the miss ratio caused by the number of 

invalidation misses. (Note that the scale of the y­

axis is roughly one-sixth that of VERIFY in Fig­

'JI'e 5-11.) 
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size increases from 16K bytes to 512K bytes. (See comparative curves for different types of 

misses for two of the traces, TOPOPI' and VERIFY, in Figures 5-10 and 5-11, respectively.) 

These results indicate that the benefits of increasing cache size are less pronounced for parallel 

programs than uniprocessor programs. 

The reason is the presence of invalidation misses. The number of invalidation misses is 

inversely related to the number of block replacements, i.e., they increase as block replacements 

fall. At small cache sizes, the number of block replacements is relativeiy high. If it is assumed 
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Figure 5-11: Classification of Misses 
for VERIFY 

Miss trends for VERIFY typify the effect of shar­

ing with increasing cache size. The presence of 

invalidation misses causes the total number of 

misses (ancl hence the miss ratio) to be higher tha.'l 

for a uniprocessor program. Their rise, as cache 

size increases, widens the gap between the total 

and uniprocessor miss ratio. CElL and SPICE 

have similar curves, although fewer misses in ab­

solute and fewer invalidation misses propor­

tionately. Their Iowa figures are due to sequen­

tial sharing. 
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Figure 5-12: Ratio of Invalidation Misses 
to Total Misses 

The ratio of invalidation misses to total misses in­

creases with increasing cache size. The rise is 

much steeper than with increasing block size for 

the traces with sequ~ntial sharing, CEll and 

SPICE. (The numbers are the geometric mean of 

invalidation to total misses, across all processors. 

Since the individual processor figures for VERI­

FY were widely skewed, the geometric means do 

not match the ratios of the absolute misses in Fig­

ure 5-11.) 



117 

that shared data are replaced at the same rate as private data or instructions, then a proportion of 

shared data blocks, equivalent to the percentage of blocks replaced, will be eliminated from the 

cache. They therefore cannot be invalidated and, consequently, will not incur invalidation 

misses. s As cache size increases, the percentage of block replacements drops. Shared data tend 

to remain in the caches for longer periods of time, have more opportunity to be invalidated, and, 

consequently, rereferenced via invalidation misses. The number of invalidation misses should 

be higher with each successively larger cache, approximately by the percentage decrease in 

block replacements. 6 For very large cache sizes, in which the program's working set fits into the 

cache, the incremem.al number of block replacements is negligible, and the invalidations will 

tend to level off. Again, the traces confirm the analysis. For all traces, the number of invalida-

tion misses rises with increasing cache size. The increase is most pronounced at smaller cache 

sizes, at which the change in block replace·-,ents is also greater (table not shown). 

As was true with the block size figures, the proportion of invalidation misses becomes 

larger as cache size increases (see Figure 5-12). For the traces with sequential sharing and good 

spatial locality (CELL and SPICE), the effect of the invalidation misses is more pronounced 

with larger cache sizes than with larger block sizes. Invalidation misses cause the greatest per-

turbation for TOPOPT, the trace with the most fine-grain sharing. Here the proportion of invali-

dation misses to total misses ranges from 42 to 93 percent, as cache size increases from 16K to 

512K bytes. This causes the total miss ratio to be 1. 7 to 15.4 times greater than its uniprocessor 

component (again, see Figure 5-10). 

The working sets of TOPOPT and VERIFY fit into the larger sized caches. Once the 

caches were filled, the number of uniprocessor misses remained constant. The invalidation 

3 They will. however, like all data and insttuetions, incur replacement or capacity misses [Hil187]. However, 

this is a consequence of the smaller cache size., rather than the type of data (shared), and will occur for all data and in­

structions. As caches get larger, some of the capacity misses become invalidation misses. No matter which category 

they fall in. i.e., no matter what the cache size., they still contribute 10 the miss ratio. 

6 The rising cost of sharing with larger caches is a problem usually associated with write-broadcast coherency 

protocols (see Chapter 6); it is interesting that the problem occurs with write-invalidate as well. 
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Percentage Change in Miss Ratio 

Trace Miss Ratio Cache Size Spread (in bytes) 

Tvoe 16K-32K 32K-64K 64K-128K 128K-256K 256K-512K 

CELL Total -35.193 -41.487 -26.267 -25.147 -18.225 

Uniproc. -39.832 -50.511 -41.174 -49.245 -54.467 

SPICE Total -29.444 -29.770 -68.364 -42.592 -1.324 

Uniproc. -31.566 -32.189 -75.871 -61.098 -7.120 

TOPOPT Total -35.647 -5.812 -12.197 0.000 0.000 

Unioroc. -72.467 -26.663 -70.330 0.000 0.000 

VERIFY Total -38.203 -27.167 -11.596 -15.354 0.000 

Unioroc. -47.062 -43.031 -25.338 -35.544 0.000 

Table 5-l: Percentage Change in Miss Ratio with Increasing Cache Size 

This table contains the incremental miss ratio decline as cache size increases. Note that for all programs 

and all cache sizes, the uniprocessor miss ratios declined more steeply (bold) than total miss ratios. This 

indicates that uniprocessor programs obtain a greater benefit from increasing cache size than do parallel 

programs. 

misses also remained constant, because there was no more block replac-::ment effect. 

5.3. The Effect of Sharing on Bus Utilization 

The critical system bottleneck in a single-bus, shared memory multiprocessor is the 

bandwidth of the system bus. Relatively few processors can be attached to the bus, unless each-

ing is used to reduce their bandwidth requirements. For a single-bus multiprocessor, the most 

important consideration for cache organization is how well it limits bus utilization. As was 

implied by the higher miss ratios in the last section, the bandwidth requiremel)ts are greater in 

parallel programs than uniprocessor programs because of the sharing traffic. With large caches 

and large block sizes, sharing traffic is expected to dominate the bandwidth and, consequently, 

dictate the number of processors that can be effectively attached to the bus. 
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5.3.1. Varying Block Size 

Several uniprocessor studies [Good87, Przy88, Srnit87] have shown that, up to a certain 

size, increasing the block size can improve bus performance. A decreasing miss ratio, as block 

size is increased, is responsible for the improvement An increase in the time per miss, that also 

accompanies larger block sizes, partially erodes the benefit of the dropping miss ratio. The 

breakeven point occurs when the decline in the miss ratio is offset by the increase in the average 

number of cycles per transfer. Results in any bus utilization study are highly dependent on the 

cycle assumptions for both memory accessing and bus transfer overhead. But, for caches of the 

size under study, i.e., 128K bytes, and up to 32 byte blocks, at least one study has shown that 

the average memory access time declines with increasing block size [Agar88]. 

Sharing alters bus utilization in two ways. First, invalidation signals and invalidation 

misses are sources of additional bus traffic, since they do not exist in uniprocessor systems. 

They cause bus utilization to be higher in parallel programs. Second, the slope of the bus utili-

zation curve is determined by the memory reference pattern to shared data. Programs with 

fine-grain sharing have miss ratios that increase rather than decrease with block size. Therefore 

their miss ratios compound the increase in bus traffic caused by the larger transfer unit, and bus 

utilization increases. For programs that exhibit sequential sharing, miss ratios decline, and the 

marginal miss ratios (as block size increases) are comparable to those for uniprocessor pro-

grams. In this case, bus utilization could proceed in either direction, depending on whether the 

change in the miss ratio is great enough to offset the increase in the average ~umber of cycles 

per transfer. 

The traces under study reflected these effects. For all traces, bus utilization was higher 

than its uniprocessor component.7 (The ranges for the individual traces are: 1.9 to 2.2 higher for 

7 Uniprocessor bus utilization is determined by excluding the cycles used for invalidation signals and invalida­

tion misses. 
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Figure 5-13: Effect of Block Size 
on Bus Utilization 

Bus utilization is calculated as the number of cy­

cles during which a bus operation took place, di­

vided by the total cycles in the simulation. The 

bus cycles include cycles for the overhead of bus 

operations, in addition to those counted in bus 

traffic figures. The sequential sharing of CELL 

and SPICE produced the declining or flattened bus 

utilization curves; the fine-grain sharing of TO­

POPT and VERIFY exacerbated their already ris­

ing average cycles per transfer, resulting in in­

creasing bus utilization. (All block size graphs are 

for a 128K byte cache.) 
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Figure 5-14: Ratio of Sharing Bus Cycles 
to Total Bus Cycles 

The cycles needed for invalidations and invalida­

tion misses were a substantial portion of or com­

pletely dominated total bus cycles, over most 

block sizes. This indicates that efforts to reduce 

bus bandwidth demands should concentrate on the 

sharing-related traffic. 

CELL, 1.7 to 1.8 higher for SPICE, 2.3 to 17.7 higher for TOPOPT and 1.3 to 2.6 higher for 

VERIFY.) For the most part, the sequential sharing of CELL and SPICE produc_ed a miss ratio 

that decreased enough to offset the increase in the average cycles per transfer. The result was 

bus utilization figures that decreased over most of the block size spectrum (see Figure 5-13). 

TOPOPT and VERIFY are programs with a fair amount of fine-grain sharing. The resulting 

increase in their miss ratios (or a very small decrease for some block sizes for VERIFY), plus 

the normal rise in the average number of cycles per transfer, produced increasing bus utilization 
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figures (again, see Figure 5-13). ([Cher88] has also noticed the effect of fine-grain sharing on 

bus traffic. In simulations done on a four-processor multiprocessor, in which management of 

the 256K byte cache was done under software control, two traces exhibited an increase in bus 

operations per reference, as block size was increased.) 

For three of the traces sharing-related bus overhead comprised a substantial portion of 

total bus cycles across all block sizes but one (4 bytes for VERIFY). For the fourth trace, 

TOPOPT, they totally dominated bus activity. The ranges are 56 to 94 percent for TOPOPT, 45 

to 61 percent for VERIFY (excluding the exception), 47 to 54 percent for CELL, and 40 to 44 

percent for SPICE (see Figure 5-14). (The proportions are higher than the proportions of invali-

dation misses to total misses, because the cycle figures include cycles for invalidation signals as 

well as invalidation misses.) The curves clearly show that for 128K byte caches bus bandwidth 

requirements are detennined by the sharing traffic. 

Because sharing-related bus overhead is such a large proportion of total bus cycles, its 

behavior as block size increases can dictate the bus utilization trend. TOPOPT is the most 

extreme example. It has the largest proportion of sharing cycles, and their rate of increase is 

steep (see Figure 5-15). Although the uniprocessor cycles decline with increasing block size, 

their rate of decline is more moderate, and they are a very small proportion of total bus cycles. 

Therefore TOPOPT's total bus utilization curve rises. The other three traces exhibit similar 

effects, although for the programs with sequential sharing, the sharing cycle trends pull total bus 

utilization downwards. (An example appears in Figure 5-16.) 

5.3.2. Varying Cache Size 

Increasing cache size is an important design technique for improving bus utilization. 

With the exception of enlarging either an extremely small block or a very large cache, 8 it pro-

8 Increasing an already large cache is an exception because it provides linle additional benefit; on the other 

hand, doubling a very small block, say 4 bytes in size, produces a good performance improvement. 
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Figure 5-15: Classification of Bus Cycles 
forTOPOPT 

The proportion of sharing-related bus cycles for 

TOPOPT ranged from 56 to 94 percent Because 

they were such a majority of total bus cycles, their 

behavior forced bus utilization to follow suit. 

122 

360000 ---------- ---------T·------T·--------1 

B 
300000 ---------r- -----r---------r·-------~ 

~ 240000 -····-··-·j········ j--········t·······-··j 
~- j ;TOTAL 

C I 80000 ······-···j--~-,:····j··-··-··-·:-··-·····-j 
y ' ' ' ' ' 
c f ·,_; i ! 
1 ' ' ... _ ' ' 

e 
s 

120000 ··········J··-·.,.·~··r·-··'-•+::::::·:.:+UNIPROCESSOR 

: ..... : : 
i : - - +- - - ~SHARING 

60000 ········-+·---····-r-·······-:-···-·····1 
0 

4 16 32 

Block Size (bytes) 

Figure 5-16: Classification of Bus Cycles 
for SPICE 

SPICE was typical of programs with sequential 

sharing. The decline in sharing-related bus cycles 

reinforced a corresponding drop in uniprocessor 

bus cycles, producing a falling bus utilization 

curve. 

vides a larger perfmmance boost than increasing either block size or set associativity [Przy88]. 

There are two factors that contribute to the greater improvement. First, the miss ratio is more 

responsive to cache size than to increases in the other two parameters. Second, the longer cache 

access time of larger caches is less severe a penalty to effective access time than the cost of 

increasing either of the other parameters, particularly, the increase in bus traffic with a larger 

block size. 

All of the traces exhibit the expected falling bus utilization (see Figure 5-17), and for the 

usual reason: a miss ratio t'lat declines with increasing cache size (see Figure 5-9). The decline 

is particularly sharp for the programs with sequential sharing, CELL and SPICE, and their bus 

utilization curves reflect the drop. The decrease in the miss ratios did not translate directly into 
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Figure 5-17: Effect of Cache Size 
on Bus Utilization 

As is true for uniprocessor programs, bus utiliza­

tion for the parallel programs declined with in­

creasing cache size. The benefit of enlarging the 

cache was greatest for the two programs with 

sequential sharing, CELL and SPICE. (All cache 

size graphs assume a 32 byte block.) 
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Figure 5-18: Uniprocessor Bus Utilization 

Bus utilization was higher than its uniprocessor 

component The ranges for the individual traces 

are: 1.04 to 3.1 higher for SPICE, 1.2 to 3.7 higher 

for VERIFY, 1.1 to 5.1 higher for CEll and 1.9 

to 17.7 higher for TOPOPT. 

Cache Size (Kbytes) 

Figure 5-19: Rat.o of Sharing Bus Cycles to Total Bus Cycles 

The proportion of sharing-related bus cycles to total cycles rises sharply with increasing cache size. For 

large caches, they comprise the largest component of bus utilization. 
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a comparable change in bus utilization, because of a rise in both the number of cache-to-cache 

transfers and the number of invalidations. Under the Berkeley Ownership cache coherency pro­

tocol, cache-to-cache transfers are the mechanism for satisfying processor reads to dirty shared 

data. As cache size increases, the number of cached dirty shared blocks also increases, and 

therefore the number of cache-to-cache transfers goes up. In the simulator's memory system 

(and the implementation of SPUR as well), cache-to-cache transfers require more cycles than 

memory transfers. The shift to the more expensive type of data transfer, as cache size increases, 

flattens the bus utilization curve. A more optimized cache controller implementation or a 

slower memory would have produced a steeper drop. (The effect of invalidation signals on bus 

utilization was discussed in section 5.3.1.) 

The proportion of sharing-related bus cycles to total bus cycles is depicted in Figure 5-19. 

For all traces, cycles due to invalidation signals and invalidation misses rise sharply with cache 

size. For large caches (128K bytes and up), they dominate bus bandwidth demands. (Results in 

[Site88] also indicate a rising proportion of sharing traffic with increasing cache size, although 

the sharing traffic does not dominate, even with one megabyte caches. Traces for their study 

are concatenated samples of memory references of CAD and expert systems applications run­

ning under MACH, in a two processor multiprocessor.) 

5.4. Concluding Discussion 

5.4.1. Implications for Cache and Bus Designers 

Cache design is an optimization problem. Its goal is to minimize effective access time by 

changing various cache parameters. The difficulty is that these parameters alter cache perfor­

mance in conflicting ways. For example, increasing cache size decreases the miss ratio, but at 

the expens~ of a longer cache access time. Increasing the block size also decreases the miss 

ratio, but only until the pollution point is reached. After that, larger block sizes produce a rising 
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miss ratio. An additional drawback of all block size increases is the accompanying increase in 

the amount of data that is transferred in a single bus operation. The increase in the average 

cycles per transfer can cause bus utilization to rise even before the pollution point is reached. 

Parallel programs, running under write-invalidate coherency protocols, complicate cache 

design by introducing another factor into the optimization problem: invalidation misses. The 

studies in this chapter have shown that invalidation misses increase miss ratios, sometimes 

enough to reverse declining miss ratio curves produced by the other factors. For example, as 

cache size increases, the number of invalidation misses also increases. Invalidation misses 

occur in smaller caches as well, but in the guise of replacement misses. With larger caches, 

some replacement misses for instructions and private data are eliminated; those to shared data 

can only be converted to invalidation misses. The result is a miss ratio that, for most of the 

traces, ranges from 2.2 to 4.7 times greater than its uniprocessor component, and 15 times 

greater in the worst case. 

Sharing references also derive less benefit than uniprocessor references from a larger 

block size. Increasing block size either increases the number of invalidation misses or 

decreases them at a rate that is less than for uniprocessor misses. The type of miss behavior 

depends on whether the program exhibits sequential or fine-grain sharing. In the former, invali­

dation misses decline with block size, and produce a miss ratio that is higher than for compar­

able uniprocessor programs. When there is fine-grain sharing, the number of invalidation 

misses rises dramatically with block size. The incr~ase is enough to rever:se the declining miss 

ratio that occurs with uniprocessor programs in caches of this size (128K bytes). 

In all cases the miss ratio is higher than in uniprocessor caches. Therefore designers must 

use larger or more complex caches9 to obtain the same performance in multiprocessors; even 

then, they might not be able to obtain this level, because some costs of sharing are inherent in 

9 For example, greater associativity, multi-level caches, etc. 
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the algorithm, and are unaffected by cache design changes. The choice of block size is depen­

dent on the anticipated workload mix, in particular the balance between programs that exhibit 

sequential or fine-grain sharing. 

The additional cache misses, of course, increase bus utilization. Moreover, sharing under 

write-invalidate protocols introduces another type of bus operation, the invalidation signal, 

which further increases bus utilization. Bus utilization was 1.04 to 17.7 times higher with 

increasing cache size, and 1.3 to 17.7 times higher with increasing block size. Even for the 

small-scale multiprocessors studied, the bus was well utilized, with typical bus utilization 

figures ranging from 30 to 70 percent. The implication for bus design is a need for additional 

speed in order to support a larger scale, single-bus multiprocessor. Fast bus architectures (for 

example, split transaction bus protocols) and faster bus implementations (for example, bipolar 

or optics) are e\·~n more important in multiprocessors than uniprocessor systems. 

5.4.2. Implications for Parallel Software Writers 

The performance of parallel programs may be improved by a variety of software tech­

niques for restructuring shared data. The techniques can be used by applications programmers 

and operating system designers, or compiler writers. 

We have seen that shared references were responsible for considerable overhead in the 

cache and bus performance of parallel programs. Invalidation misses comprised a substantial 

proportion of total misses for moderate block sizes (32 bytes, and even smaller for some traces) 

and large cache sizes (128K bytes and up). For all block sizes and large caches, sharing-related 

bus traff.c accounted for the majority of total bus cycles. 

As multiprocessor caches continue to increase in size, uniprocessor misses will become a 

decreasingly smaller proportion of total traffic; and a correspondingly larger proportion will be 

due to sharing. Adding processors to such systems will increase sharing traffic in absolute 

terms. The bonom line is that it is the sharing traffic that will determine bus bandwidth 
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demands, and will eventually limit the scale of the single-bus multiprocessor by creating a bus 

bottleneck. 

Given that multiprocessors already have large caches, the bottleneck can only be post-

paned by improving the cache and bus performance for the shared data portions of the parallel 

programs. One observation of the programs studied here is that their memory reference pattern 

to shared data within the cache block largely determines the coherency cost, measured by miss 

ratios and bus utilization. Sequential sharing reduces the number of invalidation signals and 

invalidation misses, which lowers these metrics. On the other hand, fine-grain sharing, i.e., 

poor sequential sharing, has the opposite effect. Thus better memory organization for shared 

data can improve program execution. 10 If shared data accessed by different processors are allo-

cated to separate cache blocks, then programs with fine-grain sharing should obtain lower 

coherency costs, and an improvement in overall performance. 

Better data alignment can occur by at least two different means. The first is through expli-

cit programmer specification of the organization of shared data and runtime support for its allo-

cation in shared memory on cache block boundaries. Currently, shared variables may be 

dynamically allocated by a system runtime routine that makes the data visible to all processes. 

In the proposed data alignment scheme, the programmer would be responsible for grouping 

those shared variables that are used by different processors via separate system calls. The rou-

tine itself would allocate the shared data in each invocation on cache block boundaries, padding 

out the block when necessary. The advantage of this approach is the simplicity of its imple-

mentation; it is a very straightforward technique for reducing bus traffic under software control. 

Its disadvantages are that it places the responsibility for optimal runtime memory usage of 

10 Improvements can also come from algorithmic developmenL For example, waveform relaxation techniques 

for circuit simulation have better parallel program throughput than the original direct method. The improvement 

comes because the shared structures (subcircuits) can be more easily partitioned among the processors than in the ori­

ginal method. A further benefit (that also exists in uniprocessor implementations) occurs because only those nodes 

whose input values have changed during the current time step by a nontrivial amount are reevaluated in the next step. 
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shared variables entirely on the programmer and requires that the runtime system be aware of 

the cache block size. 

A second method for improving the memory organization of shared data addresses the 

issue of programmer responsibility, but at an extremely high cost in implementation complex­

ity. The approach involves the automatic compiler detection and consequent memory alloca­

tion of per processor shared variables. The techniques involved are similar to those used both 

for the lifetime analysis of objects to reduce garbage collection overhead [Rugg88] and in res­

tructuring Lisp programs for concurrent execution [Laru88]. The problem is difficult, because 

the compiler must analyze references to pointers rather than discrete variables. The set of 

objects that are linked by pointers may be arbitrarily complex, and it is difficult to detect their 

dynamic relationship. A precise solution is intractable; in practice, the technique could prob­

ably only be used for a subset of easily recognizable structures. Moreover, a compile time 

analysis produces a conservative, worst-case estimate that may not reflect the actual execution 

behavior of the program. This can lead to wasted memory and additional bus traffic, because 

small objects would be allocated to larger cache block units. At this point, automatic compiler 

detection of shared data that is actually used by a single processor is an open research question; 

it is not clear that freeing the programmer of the responsibility for optimally allocating shared 

data is worth the complexity of the automatic solution. The programmer-initiated solution 

should be tried first to determine whether it can produce the performance benefits of good 

sequeatial sharing. 
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6.1. Introduction 

Evaluating the Performance 

of Four Snooping 
Cache Coherency Protocols 

Both write-invalidate and write-broadcast coherency protocols have been criticized 1 for 

0eing unable to achieve good bus performance across all cache configurations. Write-invalidate 

performance can suffer as coherency block size increases, because of inter-processor contention 

for addresses within the cache block (see Chapter 5, sections 2.1 and 3.1 and [Egge89]). Large 

cache sizes will hurt write-broadcast, because of continued bus updates to data that remains in 

the cache but is no longer actively shared. 

Enhancements to the original protocols have been proposed to solve each problem. A 

read-broadcast extension [Good88, Sega84] to write-invalidate reduces the number of misses for 

invalidated data by allowing all caches with invalidated blocks to receive new data when any of 

them issues a read request. It should therefore improve both the miss ratio and bus utilization of 

1 The criticism is unpublished, but widely verbalized in the research community. 
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write-invalidate. A competitive snooping protocol, introduced in [Karl86, Karl88], was 

designed to limit the number of broadcasts in write-broadcast. It therefore puts a cap on the 

performance loss caused by large caches. 

The goal of this chapter is twofold: first, to measure the performance problems in the 

write-invalidate and write-broadcast protocols, as block or cache size increases; and second, to 

gauge the extent to which the read-broadcast and competitive snooping extensions solve each 

problem. The results indicate that read-broadcast reduces the number of invalidation misses, 

but at a high cost in processor lockout from the cache. The net effect can be an increase in total 

execution cycles. Competitive snooping benefits only those programs that exhibit sequential 

sharing. For programs characterized by inter-processor contention (fine-grain sharing) for 

shared addresses, competitive snooping can degrade performance by causing a slight increase in 

bus utilization and total execution time. 

The remainder of this chapter contains the two companion protocol studies. Each begins 

with empirical evidence of the performance loss caused by increasing block or cache size in the 

original protocol. Then the protocol extensions are described, and the extent to which they 

improve performance is measured. Section 6.1 briefly reviews two aspects of write-invalidate 

protocols: the origins of additional coherency overhead caused by large coherency block sizes 

that was explained in Chapter 4, section 7; and the effects of the overhead on miss ratio and bus 

utilization studied in Chapter 5. Section 6.2 presents the read-broadcast extension and its 

benefits and costs to both performance and cache controller implement~tion. The effects of 

increasing cache size on bus traffic under write-broadcast protocols is covered in section 6.3. 

Section 6.4 discusses the competitive snooping alternative and its performance relative to 

write-broadcast. The last section integrates the results of both studies. 
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6.2. The Write-Invalidate Protocols 

6.2.1. The Write-Invalidate Trouble Spot 

Write-invalidate protocols maintain coherency by requiring a writing processor to invali­

date all other cached copies of the data before updating its own. It can then perform the current 

update, and any subsequent updates (provided there are no intervening accesses by other proces­

sors) without either violating coherency or further utilizing the bus. Because they create a data 

writer that can access a shared block without using the bus, write-invalidate protocols minimize 

the overhead of maintaining cache coherency in two cases: when there are multiple consecutive 

writes to a block by a single processor (sequential sharing), and when there is little inter­

pmcessor contention (fine-gmin sharing) for the shared data. Periods of severe contention, how­

ever, cause coherency overhead to rise. Inter-processor contention for an address produces 

more invalidations; the invalidations interrupt all processors' use of the data and increase the 

number of invalidation misses to get it back. The result is that shared data pingpongs among 

the caches, with each processor's references causing additional coherency-related bus opera­

tions. The greater the number of processors contending for an address, the more frequent the 

pmgponging. 

The problem is exacerbated by a large block size, because contention can occur for any of 

the addresses in the block. Therefore the probability that the block will be actively shared 

increases. An invalidation to one word in a block causes all other words to be invalidated. 

When other processors subsequently reread these addresses, additional read misses are incurred. 

The overhead is paid even when a processor reads an address that was not updated. With small 

block sizes, particularly those of only one word, a write to one address has less effect on reads 

to another. 
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6.2.2. Empirical Evidence for the Trouble Spot Analysis 

Chapter 5 studied the effect on both miss ratio and bus utilization of increasing block size 

and cache size under write-invalidate protocols. (The particular write-invalidate protocol used 

in the simulations was Berkeley Ownership.) The results quantify the loss in perfonnance due to 

invalidations and invalidation misses. In particular, they support the above analysis concerning 

the adverse effects of fine-grain sharing, as block size increases. 

Parallel programs, with or without contention, suffer from coherency overhead. Unlike 

uniprocessor misses [Agar88, Alex86, Good87, Hill87, Smit87], invalidation misses react less 

favorably to increasing block size. Chapter 5 found that the proportion of invalidation misses to 

total misses actually increased with larger block sizes, and for three of the traces was 

significant. (The proportions grew from .32 to .37 for CELL, .14 to .30 for SPICE, .06 to .51 

for VERIFY and .39 to .94 for TOPOPT, as block size was increased from 4 to 32 bytes.) For 

programs with sequential sharing (CELL and SPICE), (total) miss ratios were higher than for 

comparable uniprocessor programs and declined with increasing block size at a slower rate. 

The effect on programs with fine-grain sharing (TOPOPT and VERIFY) is more severe. 

here invalidation misses increased with increasing block size, not only in proportion to total 

misses, but in absolute numbers as well. (The proportion of invalidation misses for TOPOPT 

and VERIFY is stated above; the percentage increase in number of misses was 511 and 840 per­

cent, respectively.) Their dominance was so complete that they reversed the declining miss ratio 

curves that nonnally occur with uniprocessor programs in caches of this si:r.e (128K bytes). 

The additional cache misses increased bus utilization. Moreover, sharing under write­

invalidate protocols introduces another type of bus operation, the invalidation signal, which 

further increased bus utilization. Bus utilization rose 407 and 94 percent for TOPOPT and 

VERIFY, as block size increased from 4 to 32 bytes. Even for the small-scale multiprocessors 

studied (12 processors at most), the bus was well utilized, with bus utilization figures of 45 and 
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97 percent, respectively, at the 32 byte block size. Bus utilization for CELL and SPICE was 

midrange, higher than for uniprocessor programs, and declined over the block size spectrum. 

6.3. The Read-Broadcast Extension 

6.3.1. Protocol Description 

Since invalidation misses play such a large role in the cache and bus performance of paral-

lei programs at large block sizes, coherency protocols that can reduce them are desirable. 

Read-broadcast [Good88, Sega84] is an enhancement to write-invalidate protocols designed 

explicitly for this purpose. Under read-broadcast snoops update an invalidated block with data 

from the bus, whenever they detect a read bus operation for the block's address. Detection is 

positive whenever the tag of the snooped address matches that of a cached block, and the block 

state is invalid. 

The read-broadcast extension adds little complexity to the cache controller hardware. An 

examination of the SPUR cache controller implementation indicates that one additional min-

term is required in the snoop PLA for the detection. Assuming that the snoop can have access 

lo the cache in a short and bounded amount of time, a buffer large enough to hold the data as it 

comes from the bus is also needed. If timely snoop access to the cache cannot be guaranteed, 

an extra bus line is necessary to delay transmission of the data. Finally, control to implement 

read-interference2 is required to meet the invalidation miss limit, described below. 

The technique improves the performance of write-invalidate by limiting the number of 

invalidation misses to one per invalidation signal. One invalidation miss occurs if the bus 

operation is a read issued by a cache with a previously invalidated block. No invalidation 

2 Read-interference occurs when a processor has queued a bus read request for an address that is read-broadcast 

before the requesting processor obtains the bus. During the read-broadcast the requesting processor updates its cache 

with data from the bus. Therefore it can satisfy its read reference directly from the cache and no longer requires the 

bus operation. Control is needed to detect the interference and cancel the pending read bus operation. 
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misses result when the bus read is a first-reference or replacement miss. Subsequent rereads by 

processors that have received data on a read-broadcast will be a cache hits rather than invalida-

tion misses. 

6.3.2. Read-Broadcast Results 

6.3.2.1. The Benefits to Miss Ratio and Bus Utilization 

Read-broadcast reduced the number of invalidation misses (see Table 6-1). For three of 

Com arisen of Berkelev Ownership & Read-Broadcast 

Trace Block Invalidation Misses Miss Ratio 

Size Berk. Read Decrease Berk. Read Decrease 

(bvtes) Own. Bdcast. (percent) 0\\'Il. Bdcast. (percent) 

CELL 4 22649 13566 40.1 1.93 1.67 13.7 

CELL 8 18823 11264 40.2 1.49 1.28 14.1 

CELL 16 15040 8942 40.5 1.10 0.93 15.6 

CELL 32 11748 7325 37.6 0.86 0.73 14.4 

SPICE 4 6918 6663 3.7 2.90 2.97 -2.2 

SPICE 8 4143 3870 6.6 1.64 1.65 -0.2 

SPICE 16 3607 3447 4.4 1.09 1.10 -0.4 

SPICE 32 3726 3009 19.2 0.77 0.74 3.4 

TOPOPT 4 1890 922 51.2 0.15 0.12 20.1 

TOPOPT 8 6117 4706 23.1 0.25 0.20 17.2 

:1 TOPOPT 16 8835 6459 26.9 0.30 0.23 23.2 

TOPOPT 32 11556 7385 36.1 0.37 0.25 33.8 

VERIFY 4 2441 2062 15.5 1.42 1.41 1.0 

VERIFY 8 8921 7786 12.7 1.38 1.34 2.6 

VERIFY 16 15371 11497 25.2 1.40 1.28 9.1 

VERIFY 32 22957 13717 40.2 1.45 1.17 19.4 

T~ble 6-1: Comparison of Invalidation Misses and Miss Ratio 

for Berkeley Ownership and Read-Broadcast 

This table depicts the decline in the number of invalidation misses and the miss ratio that occured with 

read-broadcast. The drop in invalidation misses was less pronounced for SPICE, because its shared data 

had been optimized for a block size larger than the maximum studied here. This small decline, coupled 

with a slight rise in uniprocessor misses, produced rising miss ratios (negative decreases) for some block 

sizes. (All simulations were run with a 128K byte cache; miss ratios are the geometric mean across all 

processors.) 
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the traces (CELL, TOPOPT and VERIFY) the drop ranged from 13 to 51 percent, over all block 

sizes. The decrease for SPICE was much lower. SPICE data structures had been explicitly 

sized to the ELXSI 6400 64-byte cache block to avoid inter-processor contention for addresses 

within a block. Therefore, for block sizes considered in this study, up to 32 bytes, little conten­

tion was observed; and read-broadcast consequently brought less benefit. 

Because of the decrease in invalidation misses, the proportion of invalidation misses 

within total misses was less than for write-invalidate (see Figures 6-1 and 6-2). This is impor­

tant, because increases in block and cache size produce steeper reductions in uniprocessor 

misses than invalidation misses. Therefore, to the extent that misses in parallel programs are 

caused by normal cache accesses rather than sharing activity, cache performance will improve 

as block and cache sizes increase. At larger block sizes invalidation misses for CELL, 

TOPOPT and VERIFY dropped to between a quarter and a third of the total. (Under Berkeley 

Ownership they had ranged from thirty to over forty percent.) But for TOPOPT invalidation 

misses still dominated miss ratio behavior at most block sizes (90 percent at 32 bytes at max­

inurn). As with the original write-invalidate protocol, the ratio of invalidation to total misses 

for all traces rose with increasing block size. 

For the most part the consequence of the drop in invalidation misses was a decline in the 

total miss ratio (again, see Table 6-1). CELL and TOPOPf had moderate decreases (13.7 to 

15.6 percent and 17.2 to 33.8 percent, respectively); VERIFY had a wider range of decrease 

(1.0 to 19.3 percent). The miss ratio for SPICE did not decline across all block sizes, and, when 

it did, the decrease was small. The small increases occured because the samples in comparative 

(Berkeley Ownership vs. read-broadcast) simulations covered a slightly different set of refer­

ences. The difference in sampl~s was caused by the elimination of invalidation misses from the 

read-broadcast simulations. Changing invalidation misses to cache hits allows processors to 

process references more quickly than under Berkeley Ownership. The effect is to slightly alter 
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Figure 6-1: Ratio of Invalidation Misses 
to Total Misses for Berkeley Ownership 

The ratio of invalidation misses to total misses in­
creases as block sizes increase. At larger block 
sizes the invalidation misses of three of the traces 
comprise a substantial portion of the total; and for 
TOPOPT they dominate miss ratio behavior. (The 
numbers are the geometric mean of the ratio of in­
validation to total misses, across all processors.) 
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Figure 6-2: Ratio of Invalidation Misses 
to Total Misses for Read-Broadcast 

Under read-broadcast the ratio of invalidation 
misses to total misses still increases with block 
size, although the proportions are lower than with 
Berkeley Ownership. At larger block sizes the in­
validation misses for three of the traces have 
dropped to between a quarter and a third of the to­
tal; for TOPOPT they still dominate miss ratio 
behavior. 

the set of references executed and the global order in which they are processed under the two 

protocols. For SPICE the consequence was a slight rise in the uniprocessor component of the 

miss ratio for read-broadcast (relative to Berkeley Ownership), which offset the small decline in 

the number of invalidation misses. For the other traces the sample discrepancy was consider-

ably less, the uniprocessor misses were almost identical, and the reduction in the number of 

invalidation misses was also greater. Therefore the drop in invalidation misses produced a 

corresponding decline in the miss ratio. 

The critical system bottleneck in a single-bus, shared memory multiprocessor is the 

bandwidth of the system bus. Therefore the most important consequence of read-broadcast is 
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the effect of its lower miss ratios on bus utilization. The improvement (i.e., drop in bus utilita-

tion) ranged from 8.7 to 10.9 percent for CELL, .8 to 5.1 percent for SPICE, 14.3 to 22.6 per-

cent for TOPOIT and .8 to 11.5 percent for VERIFY. (Details appear in Table 6-2.) To put the 

read-broadcast benefit in perspective, the change was large enough to allow an additional two 

processors for TOPOIT, and one each for CELL and VERIFY, and still maintain the same level 

of bus utilization. (SPICE had lower bus utilization for the block sizes that had a slight rise in 

the miss ratio, because the total cycles in the simulation were higher with read-broadcast. The 

cycle increase was due to a greater delay in obtaining the bus and several other read-broadcast-

related factors that are discussed below.) 

Comparison of Berkelev Ownership & Read-Broadcast 
Trace Blocksize Bus Utilization 

(bytes) Berkeley Read Decrease 
Ownershio Broadcast (oercent) 

CELL 4 42.155 38.470 8.743 
CELL 8 39.798 35.849 9.924 
CELL 16 38.592 34.383 10.906 
CELL 32 42.559 38.042 10.614 
SPICE 4 59.546 59.070 0.798 
SPICE 8 44.821 44.159 1.477 
SPICE 16 40.298 39.948 0.870 
SPICE 32 42.221 40.061 5.117 

TOPOIT 4 8.925 6.979 21.806 
TOPOIT 8 21.289 18.247 14.288 
TOPOIT 16 30.972 25.656 17.165 
TOPOIT 32 45.108 ' 34.895 22.640 
VERIFY 4 49.738 49.346 0.788 
VERIFY 8 68.380 66.802 2.307 . 
VERIFY 16 84.760 79.215 6.543 
VERIFY 32 96.566 85.491 11.469 

Table 6-2: Comparision of Bus Utilization for Berkeley Ownership and Read-Broadcast 

This table depicts the decline in bus utilization that occured with read-broadcast over Berkeley Owner­
ship. (All simulations were run with a 128K byte cache; bus utilization figures are the geometric mean 
across all processors.) 
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The magnitude of the drop in both miss ratio and bus utilization was moderate. The per-

formance gain was less than expected because of the extremely sequential nature3 of the sharing 

in the programs. Sequential sharing can be measured by several metrics (see Chapter 4, section 

3.2). The most pertinent for a study of invalidation misses is the average number of processors 

that reread an address between writes by different processors. For all traces this figure averaged 

around one (1.1 for CELL, .7 for SPICE, .8 for TOPOPT and 1.0 for VERIFY), with the distri-

bution heavily weighted by zeros and ones. (CELL had the most evenly spread distribution, 

with 2 or more processors rereading between 25 and 21 percent of the time. This accounts for 

its greater decline in invalidation misses. SPICE had the most skewed distribution, with 

between 91 and 98 percent of the writes followed by zero or one rereads. Its improvement was 

the least of the traces.) In actual practice the number of invalidation misses was quite close to 

the read-broadcast limit of one. This was true even for the traces characterized by fine-grain 

sharing (TOP OPT and VERIFY). If there had been more processors involved in the contention, 

read-broadcast would have provided greater benefit. 

63.2.2. The Cost in Per Processor and System Throughput 

The reduction in invalidation misses did not come for free. Read-broadcast has two side 

effects that contribute to processor execution time: an increase in processor lockout from the 

cache4 and an increase in the average number of cycles per bus transfer. Their consequence for 

three of the traces was an increase in total execution cycles over the Berkeley Ownership simu-

lations. 

The more important of the two factors is the increase in processor lockout from the cache. 

Cache lockout occurs because of CPU and snoop contention over the shared cache resource. 

3 Recall that in sequential sharing each processor completes multiple accesses to the shared data before another 
processor begi..TJ.s. The alternative is fine-grain sharing, in which there is inter-processor contention for the data. 

4 I am referring to the data RAMs. As. stated in Chapter 3, there are two copies of the tags and state, one for the 
CPU and one for the snoop. 
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The CPU must use the cache for fetching the current instruction (on a miss in the on-chip 

instruction cache or for all instructions if there is no on-chip cache), obtaining data referenced 

by the current instruction, and prefetching subsequent instructions. In machines like the one 

being simulated, with a RISC-based architecture, no on-chip instruction cache and a cache 

access time that matches the cycle time of the CPU, the CPU needs to access the cache each 

cycle. 5 At the same time, the snoop also needs access to the c~che for maintaining coherency. 

Read-broadcast requires more snoop-related cache activity than Berkeley Ownership, because 

snoops must deposit data into the cache on some bus reads and more snoops must update the 

processor's cache state on subsequent invalidations. The first operation docs not occur under 

Berkeley Ownership, and the latter occurs less frequently. Both activities divert the CPU from 

its normal instruction execution and contribute to program slowdown. 

The increase in lockout with read-broadcast was substantial (278 to 305 percent for 

CELL, 147 to 191 percent for SPICE, 35 to 87 percent for TOPOPT and 143 to 329 percent for 

VERIFY). On the average 42 percent of total lockout cycles was attributable to taking data on 

read-broadcasts, and 40 percent to the state updates. (Cache-to-cache transfers account for the 

remainder.) The increase due to these factors was softened somewhat by the lockout savings 

from a decline in cache-to-cache transfers that had satisfied invalidation misses under Berkeley 

Ownership. 

However, in terms of total execution cycles, processor lockout was a minor cost. The 

ratio of lockout to total cycles averaged 5.8 percent for all traces, across most block sizes. 'I'r.e 

lone exception was VERIFY's 32 byte block simulation, in which processor lockout accounted 

for an appalling 21 percent of total cycles. The importance of processor lockout is that for three 

of the traces (CELL, SPICE and VERIFY), its increase wiped out the benefit to total execution 

cycles gained by the decrease in invalidation misses. The consequence was a slight increase in 

5 In CPUs with instruction caches on-chip, prefetching accesses would replace many of the instruction accesses. 
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total execution cycles, ranging from .9 to 3.6 percent. The lone exception was TOPOIT, in 

which the benefit from declining invalidation misses was greater than the cost of processor 

lockout; here the improvement in total execution cycles varied from .I to 7. 7 percent, as block 

size increased from 4 to 32 bytes. 

The negative effect of processor lockout would not be as severe with a more optimized 

cache controller implementation. In the SPUR implementation, the priority for using the cache 

belongs to the processor rather than the snoop, and the two run on asynchronous clocks. There­

fore the snoop must negotiate to obtain use of the cache (via separate request and grant cycles), 

and acknowledge that it has finished. A more optimized implementation would eliminate the 

handshaking cycles by using a single clock for the entire system. 

A lower bound can be placed on processor lockout by eliminating the extra cycles from 

the above results: read-broadcast is then assumed to cost only the number of cycles needed to 

fill the cache. The results indicate that, even under these best case assumptions, the increase in 

processor lockout cycles is greater than the decrease in invalidation miss cycles for more than 

half the simulations. For these simulations read-broadcast still causes a net gain in total execu­

tion cycles. (The major exception was TOPOIT. Since it had fewer execution cycles under 

read-broadcast even with the less optimized implementation, it is not surprising that the lower 

bound assumptions would bring further improvement.) 

The second factor that contributed to an increase in processor execution time was a rise in 

the average number of cycles per bus transaction. The increases ranged from .3 to 3.1 percent, 

for all traces and over all block sizes, and averaged around one. There are two causes. The first 

is the additional cycle required in the read-broadcast implementation for the snoops to ack­

nowledge that they have completed the operation. Under write-invalidate the same snoops are 

not actively involved in the bus operation; they merely do a lookup and decide to take no 

action. The lookup can easily be subsumed in the time required for either the cache-to-cache or 
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memory transfer that satisfies the invalidation miss. The second is the need to update the 

processor's state on both read-broadcasts and simple state invalidations. For both operations 

more caches are involved than with invalidation misses and state invalidations under Berkeley 

Ownership. Therefore there is a greater probability that the update will be delayed, because the 

processor is using the cache to service a memory request. 

6.3.3. Write-Invalidate/Read-Broadcast Summary 

The criticism of write-invalidate, that multiple-processor contention within the block 

would cause excessive invalidation misses as block size is increased, was not born out by the 

analysis of these traces. It is true that the number of invalidation misses rose with increasing 

block size, and for the traces with fine-grain sharing this caused an adverse effect on miss ratios 

and bus utilization. However, most of these misses were caused by a reread by a single proces­

sor. Therefore the read-broadcast solution had less impact than was originally postulated. 

Still, at first glance it appears that read-broadcast is a good extension to the write­

invalidate protocols, primarily because it is an extremely low cost solution for the moderate 

benefit it provides. However, when the increase in both processor lockout and average cycles 

per bus transaction are considered, for most of the simulations the result is a net gain in total 

execution cycles. 

Read-broadcast would be more beneficial if two conditions were different The most 

important is if the workload were one in which more processors were contending for the data 

(for example a one producer/several consumers situation). In this case the reduction in invalida­

tion misses would be greater. The second condition, which is a second order effect, is a more 

optimized cache controller implementation, designed to minimize the cycles consumed during 

processor lockout. 



6.4. The Write-Broadcast Protocols 

6.4.1. The Write-Broadcast Trouble Spot 

Write-broadcast protocols broadcast updates to shared addresses, so that all caches and 

memory have access to the most current value. Coherency overhead stems entirely from the 

bus broadcasts. They occur for all updates to data that are contained in more than one cache, 

and for the first update to an address after the writing processor has the only copy. (In this case 

the block has been replaced in the other caches.) 

Chapter 5 demonstrated that sharing-related bus traffic will require multiprocessors to 

have larger or more complex caches than uniprocessors to obtain comparable performance. The 

requirement is particularly troublesome for the write-broadcast protocols, because larger cache 

sizes can cause an increase in broadcast operations. As cache size grows, the lifetime of cache 

blocks increases because of a decline in block replacements. Shared data tends to remain in a 

cache for longer periods of time, long past the point when its processor has fipjshed accessing it. 

However, its presence in the cache drives the shared bus line, giving the illusion of sharing. 

Therefore write-broadcasts continue for data that is no longer being actively shared. 

6.4.2. Empirical Support for the Trouble Spot 

The traces confirm this analysis. For all traces, the number of write-broadcasts rises with 

increasing cache size (see Figure 6-3). CELL and SPICE have a much larger increase than 

TOPOPT and VERIFY (84.2 and 100.3 percent over the entire cache size r.ange, versus 3.7 and 

15.2 percent). The steepness of their rise correlates with several factors, the most important of 

which 1s the pattern of inter-processor references to shared data. For CELL and SPICE this pat­

tern is characterized by sequential sharing for shared data in a coherency block. Sequential 

sharing is indicated by long average write run lengths for the blocks. (The exact figures are 4.9 

writes per write run for CELL and 6.2 for SPICE.) In small caches not all the writes in a long 
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In the Firefly protocol the number of write­

broadcasts increases with increasing cache size 

for all traces, given credence to the "illusion of 

sharing" hypothesis. 
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under Firefly 

Despite the rise in write-broadcasts, bus utilization 

fell because of the benefits of large caches on 

uniprocessor misses. 

write run result in write-broadcasts. First, shared data is replaced more frequently than in larger 

c.1:hes, and, secondly, in these traces only two processors are involved in the sharing the vast 

majority of the time. The combined effect is that data may reside in only one cache for the final 

writes in a write run, allowing these writes to take place locally. In an infinite cache, all writes 

become write-broadcasts, because blocks remain in the cache indefinitely. Therefore, as cache 

size increases, more writes in a long write run will result in bus broadcasts; and .the greater the 

average write run length, the greater the increase in write-broadcasts. TOPOPT and VERIFY, 

on the other hand, had short average write run lengths, 1.21 and 2.2, respectively. Tk smaller 

length was one of the factors responsible for the more level write broadcast curves, as cache 

size increased. 
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A second factor contributing to the shape of the curves is the rate of block replacement. 

Within a particular trace, the increase in write-broadcasts (with cache size) is most pronounced 

for smaller caches, where the drop in block replacements is also greatest. Finally, at large cache 

sizes the working sets of TOPOPT and VERIFY fit into the cache. The number of block 

replacements drops to zero and the level of write-broadcasts remains constant 

Despite the rise in write-broadcasts, bus utilization fell for all traces (see Figure 6-4).6 The 

decrease is due to the positive effects of increasing cache size on the uniprocessor component of 

bus utilization, which dropped an average of 84 percent over the cache size range. It is offset 

somewhat by the increase in write-broadcast cycles (see a representative trace in Figure 6-5). 

For all traces, the proportion of write-broadcast cycles within total cycles increased 

dramatically with increasing cache size (see Figure 6-6). The increase only leveled off at the 

point at which the working set of the program fit into the cache. At the largest cache sizes the 

write-broadcast cycles dominated bus activity for all traces. The high ratio of sharing cycles to 

total cycles means that with large cache sizes, sharing bus traffic will be the cause of the bus 

bottleneck. Therefore a protocol that limits the number of write-broadcasts is desirable. 

6.5. Competitive Snooping 

6.5.1. Protocol Description 

Competitive snooping [Karl86, Kar188] is a write-broadcast protocol that switches to 

write-invalidate when the breakeven point in bus-related coherency overhead between the two 

approaches is reached. The breakeven point for a particular address occurs when the sum of the 

write broadcast cycles issued for the address equals the number of cycles that would be needed 

for rereading the data had it been invalidated. Competitive snooping thus limits coherency 

6 The only exception is the transition to a 512K byte cache for SPICE. 
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under Firefly 

This classification of bus cycles for CELL illus­

trates the effect of write-broadcast cycles on total 

bus cycles, using the Firefly protocol. Write­

broadcast cycles rise with increasing cache size; 

uniprocessor bus cycles tend to fall. The two ef­

fects produce bus utilization that still declines, but 

less steeply than for uniprocessor programs. 

overhead to twice that of optimal. 7 
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Figure 6-6: Ratio of Broadcast Cycles 
to Total Bus Cycles 

The ratio of write-broadcast cycles to total bus cy­

cles increases with increasing cache size under 

Firefly. The rise is much steeper for the traces 

with longer average write run lengths, CELL and 

SPICE. 

The first algorithm proposed in [Karl86] (called "Standard-Snoopy-Caching") assumes 

that ar1 adversary Carl choose arJY processor to either write or reread a shared address. A 

counter, \vhose initial value is t...'1e cost in cycles of a data trarJsfer, is assigned to each cache 

block in every cache. On a ·.vrite broadcast, a cache that contains the address of the broadcast is 

7 Larry R:Jdolph makes a very apt analogy between the rationale behind competitive snooping and the diiemma 

faced by any novice skier. The beginning skier is hesitant to buy skis immediately for fear that his/her interest in ski­

ing might be a passing fancy. On the other hand renting week after week can be costly. The pivotal question is 

therefore when to stop renting and make the purchase. Not knowing ahead of time which will be his or her prefer­

ence, the budding skier should rent until he or she has spent an amount equivalent to the purchase price of new skis; 

and then buy the skis. Like competitive snooping, this course of action limits the total cost to twice that of optimal. 
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(arbitrarily)8 chosen, and its counter is decremented. When a counter value reaches zero, the 

cache block is invalidated. When all counters for an address, other than that of the writer, are 

zero, write-broadcasts for it cease. Any reaccess by a processor to an address resets its cache's 

counter to the initial value. The algorithm's lower bound proof demonstrates that the total costs 

of invalidating are in balance with the total costs of rereading. 

In an alternate algorithm (called "Snoopy-Reading") the adversary is allowed to read­

broadcast on rereads. In order to obtain the lower bound of the previous algorithm, the 

coherency algorithm is given the same capability. All other caches with invalidated copies take 

the data, and reset their counters. As in the original scheme, when a cache's counter reaches 

zero, it invalidates the block containing the address; and write broadcasts are discontinued, 

when all caches but that of the writer have been invalidated. 

Read-broadcasting by the adversary also prompts other changes in the coherency algo­

rithm. For example, on a write-broadcast all caches that contain the updated address decrement 

their counters rather than only one; and the decrementing is done on consecutive write broad­

casts by a particular processor, rather than any processor. The simultaneous decrements com­

plement the simultaneous cache updates on read-broadcasts, i.e., they reduce the costs of broad­

casting to match the cheaper rereads. The single writer requirement corresponds to all counters 

being reset on an access by another processor. More than one processor referencing the data 

indicates (obviously) that there is sharing. As long as data is shared, a good competitive 

coherency algorithm will broadcast rather than invalidate. Broadcasting. occurs as long as 

counter v<ilues are greater than zero. Therefore when a processor other than the writer accesses 

the data, all counters arc reset to force broadcasting. 

The advantages of the alternate scheme over the original are that (1) it is well suited for a 

workload in which there are few rereads (as is the case with these traces) and (2) its 

8 The particular choice of cache does not affect the worst-case bound. 
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implementatiQn doesn't require hardware to "arbitrarily" choose a cache for counter decrement­

ing. When there are few rereads, a competitive coherency algorithm should make the data 

private sooner rather than later, in order to avoid unnecessary broadcasts. By requiring all pro­

cessors to decrement their counters simultaneously, Snoopy-Reading can invalidate more 

quickly than Standard-Snoopy-Caching. 

In the simulator's implementation of Snoopy-Reading, a writing processor keeps track of 

the number of its consecutive writes to each address (through cache state values). When the 

breakeven point for broadcasts has been reached, it signals to the other caches to invalidate. 

The breakeven point was defined to be the maximum of the ratio of data transfer to write­

broadcast cycles that is used in the algorithm and the value three. The constant insures that 

write-broadcasts will continue long enough to prevent busywaiting over the bus. A processor 

uses the first of the three broadcasts for setting the lock, and the second for clearing it. At this 

point the lock is still present in other caches, and processors can detect locally that it has been 

freed. On the third broadcast (which, if it occurs, demonstrates that the address is not a lock), 

the data is invalidated. This implementation requires a six-value coherency state, and a 

correspondingly larger PLA for both the snoop and the portion of the cache controller that ser­

vices memory requests for the CPU. 

6..5.2. Competitive Snooping Results 

Competitive snooping decreased the number of write-broadcasts issued for all traces (see 

Table 6-3). The benefit was greater for those traces whose pattern of access to shared data 

within a coherency block was characterized by sequential sharing (CELL and SPICE). Recall 

that their average write run lengths were 4.9 and 6.2. Given the breakeven point in the simula­

tions, each trace saved on the average, 2 or 3 broadcasts each time a different processor wrote to 
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I Write-Broadcasts 

Trace Cache Size Firefly Competitive Percentage 

(Kbvtes) Snooping Change 

CELL 16 20402 13199 35.31 
CELL 32 26841 15507 42.23 
CELL 64 31300 15514 50.43 
CELL 128 34287 15212 55.63 
CELL 256 35444 15192 57.14 
CELL 512 37579 15338 59.18 

SPICE 16 12076 4510 62.65 
SPICE 32 18555 5900 68.20 
SPICE 64 20362 6373 68.70 
SPICE 128 22925 7045 69.27 
SPICE 256 23344 7251 68.94 
SPICE 512 24184 7412 69.35 

TOPOPT 16 8918 8218 7.85 
TOPOPT 32 9111 8352 8.33 
TOPOPT 64 9190 8410 8.49 
TOPOPT 128 9244 8458 8.50 
TOPOPT 256 9244 8458 8.50 
TOPOPT I 512 9244 8458 8.50 

VERIFY 16 20589 18091 12.13 
VERIFY 32 21726 18835 13.31 
VERIFY 64 22914 19097 16.66 
VERIFY 128 23476 19107 18.61 
VERIFY 256 23719 19330 18.50 
VERIFY 512 23719 19330 18.50 

Table 6-3: Comparison of Write-Broadcasts for Firefly and Competitive Snooping 

This table depicts the decline in the number of write-broadcasts that occured with competitive snooping. 

The drop was most pronounced for CELL and SPICE, which had the longest average write run lengths. 

Identical values across cache sizes for TOPOPT and VERIFY indicate that their working sets fit into the 

caches. (All simulations were run with a 32 byte block.) 

a shared address.9 The average write run lengths for TOPOPT and VERIFY were below the 

simulator's breakeven point (1.2 and 2.2, respectively). Therefore no broadcast savings was 

accrued in most cases. 

9 Technically this is true only for the large caches. At smaller cache sizes the savings would be less. See the 

discussion on the effect of average write run length on write-broadcast protocols in section 6.4.2. 
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The corresponding decrease in the number of write-broadcast cycles was offset to varying 

extents by the additional cycles for invalidation signals and invalidation misses (see Table 6-4). 

For CELL and SPICE the effect was to reduce the percentage improvement in cycles consumed 

in sharing-related bus operations to 10 to 26 percent for CELL and 49 to 52 percent for SPICE. 

Sharing Cvcles 
Trace Cache Firefly Competitive Snoopin~ % 

Size Write Write Invals. Inval. Total Change 

(Kbvtes) Bdcasts. Bdcasts. Misses 

CELL 16 167122 108850 24489 17820 151159 9.55 

CELL 32 221925 129716 33051 28706 191473 13.72 

CELL 64 259327 130740 37395 39140 207275 20.07 

CELL 128 285430 129361 40597 51286 221244 22.49 

CELL 256 295069 129527 41450 55567 226544 23.22 

CELL 512 312668 130360 42849 57944 231153 26.07 

SPICE 16 102645 39190 7912 2236 49338 51.93 

SPICE 32 158119 51491 13660 12786 77937 50.71 

SPICE 64 172139 55384 15115 15168 85667 50.23 

SPICE 128 191106 60515 18126 18068 96709 49.40 

SPICE 256 193971 61880 18491 18262 98633 49.15 

SPICE 512 200782 63020 19076 18907 101003 49.70 

TOPO:fYf 16 75828 74927 1603 2655 79185 -4.43 

TOPOPT 32 77214 76249 1916 3366 81531 -5.59 

TOPOPT 64 77936 76821 1920 3238 81979 -5.19 

TOPOPT 128 78256 77120 1942 3380 82442 -5.35 

TOPOPT 256 78256 77120 1942 3380 82442 -5.35 

TOPOPT 512 78256 77120 1942 3380 82442 -5.35 

VERIFY 16 170952 155223 9228 8679 173130 -1.27 

VERIFY 32 183516 165910 10798 12157 188865 -2.91 
VERIFY 64 194813 170477 12007 15809 198293 -1.79 

VERIFY 128 199733 171116 12744 18125 201985 -1.13 

VERIFY 256 200341 171961 13323 19132 204416 -2.03 

VERIFY 512 200341 171961 13323 19132 204416 -2.03 

Table 6-4: Comparison of Sharing Cycles for Firefly and Competitive Snooping 

This table depicts the difference in the number of cycles for the sharing-related bus operations for Firefly 

and competitive snooping. The decline in write-broadcast cycles is offset by cycles for invalidation sig­

nals and invalidation misses. For TOPOPT and VERIFY the combination of a smaller cycle savings in 

write-broadcasts ?nd the additional cycles relatP-d to invalidations produced a net increase in sharing­

related cycles. (All simulations were run with a 32 byte block.) 
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However, the savings was still substantial enough to cause a drop in bus utilization relative to 

write-broadcast. The decline in bus utilization for CELL ranged as high as 19 percent; for 

SPICE as high as 30 percent For all simulations but two (CELL with 16K and 32K byte 

caches) the lower bus utilization produced fewer total execution cycles. 

For TOPOPT and VERIFY the smaller decline in write-broadcasts, coupled with the addi-

tional cycles for invalidation signals and invalidation misses, produced an increase in sharing-

related bus cycles. This increase was responsible for a slight rise in their bus utilization figures 

over write-broadcast (1.6 to 4.5 percent for TOPOPT and .8 percent at most for VERIFY). 

Higher bus utilization brought an increase in total execution cycles. (Details on bus utilization 

and total execution cycles appear in Table 6-5.) 

6.5.3. Write-Broadcast/Competitive Snooping Summary 

The extent to which competitive snooping improves the performance of write-broadcast 

depends on the pattern of references to shared data. When sharing is sequential, as exhibited by 

relatively longer average write run lengths, the benefit is greatest. Here the savings in write-

broadcast cycles decreases bus utilization and total execution time. As inter-processor conten-

tion for the shared addresses rises, competitive snooping becomes less attractive. The decrease 

in write-broadcasts diminishes, and in some cases can be offset by the rise in invalidations and 

the more expensive (in numbers of cycles) invalidation misses. The result is an increase in bus 

utilization and total execution time. (An alternative argument is that programs with fine-grain-

. 
sharing for shared addresses are a good match for write-broadcast protocols. Therefore, they 

have less need for competitive snooping, and it consequently provides less benefit.) 

6.6. Chapter Summary 

This chapter contains two companion studies of bus-based, shared memory cache 

coherency protocols. The purpose of each is twofold: first, to measure the performance loss of 
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Bus Utilization & Total Execution Cvcles 

Trace Cache Bus Utilization I Total Execution Cvcles I 

Size Firefly Com pet. % Firefly Com pet. % 

(Kbvtes) Snooping Ch2:. Snoooincr Ch!!. 

CELL 16 78.21 78.24 -0.04 2251417 2275472 -1.07 

CELL 32 69.65 69.41 0.34 1722507 1726670 -0.24 

CELL 64 54.07 51.94 3.95 1367997 1358706 0.68 

CELL 128 45.13 41.29 8.49 1267754 1246316 1.69 

CELL 256 37.52 32.68 12.90 1196530 1170737 2.16 

CELL 512 33.88 27.56 18.67 1156'34 1128079 2.46 

SPICE 16 92.66 92.24 0.46 1385228 1344603 2.93 

SPICE 32 87.17 86.09 1.24 1078916 1007891 6.58 

SPICE 64 79.10 77.34 2.22 886776 795919 10.25 

SPICE 128 52.80 43.43 17.74 603795 517028 14.37 

SPICE 256 44.06 31.98 27.42 559356 474377 15.19 

SPICE 512 44.88 31.38 30.08 553071 474123 14.27 

TOPOPT 16 55.55 56.42 -1.56 491294 495603 -0.88 

TOPOPT 32 33.89 34.96 -3.13 389304 391695 -0.61 

TOPOPT 64 30.76 31.82 -3.43 381349 382676 -0.35 

TOPOPT 128 24.68 25.79 -4.51 364345 364798 -0.12 

TOPOPT 256 24.68 25.79 -4.51 364345 364798 -0.12 

TOPOPT 512 24.68 25.79 -4.51 364345 364798 -0.12 

VERIFY 16 99.97 99.97 0.00 1760674 1786211 -1.45 

VERIFY 32 97.41 97.58 -0.17 1002740 1017567 -1.48 

VERIFY 64 86.24 86.58 -0.39 744443 749358 -0.66 

VERIFY 128 78.18 78.25 -0.08 677634 682098 -0.66 

VERIFY 256 65.99 66.08 -0.14 617141 622265 -0.83 

VERIFY 512 65.99 66.08 -0.14 617141 622265 -0.83 

Table 6-5: Comparison of Bus Utilization & Total Execution Cycles 

for Firefly and Competitive Snooping 

This table depicts the change in the bus utilization and total execution cycles that occured with competi­

tive snooping. The decrease in sharing-related cycles for CELL and SPICE resulted in a decline in both. 

And, conversely, the increase in sharing cycles for TOPOPT and VERIFY produced a rise. (All simula­

tions were run with a 32 byte block.) 

changing particular cache parameter values on well-known snooping coherency techniques; 

second, to determine to wh:1t extent extensions, designed specifically to eliminate deficiencies 

in the original protocols, achieve performance improvements. In the first study, read-broadcast 

was proposed to eliminate the rise in invalidation misses in write-invalidate protocols that occur 

with increasing block size. In the second, competitive snooping was intended to limit the 
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increase in write-broadcasts caused by increasing cache size in write-broadcast coherency proto­

cols. 

The results have found that neither extension produces a savings in coherency overhead 

across all workloads studied. In those cases in which there was a performance loss, the original 

protocol, write-invalidate or write-broadcast, was a good match for the program. Therefore 

there was not much room for improvement; and the extension often introduced secondary costs 

which outweighed the small savings in coherency overhead. Furthermore, both extensions 

required some additional hardware complexity. 

The workload used in these studies is characterized by sequential sharing, i.e., data is 

shared by very few processors at a time. Therefore read-broadcast reduced the number of 

invalidation misses only moderately, and at a high cost in processor lockout from the cache. In 

some cases, the net effect was an increase in total execution cycles. These results clearly indi­

cate that read-broadcast is inappropriate for programs with sequential sharing. However, if 

more processors had been involved in the sharing, for example, a single-producer, multiple­

consumer situation, read-broadcast would have provided more benefit for a similar cost in pro­

cessor lockout. 

Competitive snooping benefits only those programs in which the pattern of reference to 

shared data is very sequential. In this case the decline in the number of write-broadcast cycles 

is greater than the additional cycles introduced by invalidations and invalidation misses; the net 

effect is a drop in bus utilization. However, for programs characterized by fine-grain sharing, 

competitive snooping can degrade performance by causing a slight increase in bus utilization 

and total execution time. Competitive snooping works well in programs that would have 

incurred less coherency overhead with write-invalidate protocols (rather than write-broadcast). 

The reason is that it uses invalidations to terminate broadcasts to shared data. 



154 

6.7. References 

[Agar88] A. Agarwal, J. Hennessy and M. Horowitz, "Cache Performance of Operation 

System and Multiprogramming Workloads", ACM Transactions on Computer 

Systems, 6, 4 (November 1988), 393-431. 

[Alex86] C. Alexander, W. Keshlear, F. Cooper and F. Briggs, "Cache Memory 

Performance in a UNIX Environment", Computer Architecture News, 14, 3 (June 

1986), 14-70. 

[Egge89] S. J. Eggers and R. H. Katz, "The Effect of Sharing on the Cache and Bus 

Performance of Parallel Programs", Proceedings of the 3rd International 

Conference on Architectural Support for Programming Languages and Operating 

Systems, Boston MA (April 1989). 

[Good87] J. R. Goodman, "Cache Memory Optimization to Reduce Processor/Memory 

Traffic", Journal ofVLSI and Computer Systems, 2, 1 & 2 (1987), 61-86. 

[Good88] J. R. Goodman and P. J. Woest, "The Wisconsin Multicube: A New Large-Scale 

Cache-Coherent Multiprocessor", Proceedings 15th Annual International 

Symposium on Computer Architecture, Honolulu HA (May 1988), 422-431. 

[Hill87] M. D. Hill, "Aspects of Cache Memory and Instruction Buffer Performance", 

Technical Report No. UCB/Computer Science Dpt. 87/381, University of 

California, Berkeley (November 1987). 

[Karl86] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator, ''Competitive Snoopy 

Caching", Proceedings of the 27th Annual Symposium on Foundations of 

Computer Science, Toronto, Canada (October 1986), 244-254. 

[Karl88] A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator, "Competitive Snoopy 

Caching", Algorithmica, 3 (1988), 79-119. 

[Sega84] Z. Segall and L. Rudolph, "Dynamic Decentralized Cache Schemes for an MIMD 

Parallel Processor", Proceedings of the 11th International Symposium on 

Computer Architecture, 12, 3 (June 1984), 340-347. 

~Smit87] A. J. Smith, "Line (Block) Size Choice for CPU C :1.es", IEEE Trans. on 

Computers, C-36, 9 (September 1987), 1063-1075. 



7 Summary and Conclusions 

This dissertation has investigated several aspects of the performance of parallel programs 

executing on single-bus, shared memory multiprocessors. Memory reference traces of four 

parallel programs were first collected, and then analyzed for their amount of write sharing and 

the pattern of multiprocessor accesses to the write shared data. Results indicated that the 

amount of write sharing, measured in numbers of memory references, was small and that there 

was little contention for either data or locks. 

A simple model of write sharing was developed, based on the inter-processor sharing 

activity to write-shared data. The model was used to predict the relative coherency overhead of 

write-invalidate and write-broadcast protocols. Parameter values for the model, both derived 

from the sharing analysis and based on the costs of maintaining cache coherency under the two 

types of protocols (assuming an implementation similar to SPUR), were applied to the model to 

obtain the predictions. Architecturally detailed simulations validated the model (in this 

architecture-independent form) for the write-broadcast protocols. However, the model did not 
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accurately predict coherency overhead for write-invalidate. Successive refinements that incor­

porated a few architecture-dependent parameters, the most imponant of which was the size of 

the coherency unit. produced acceptable predictions. 

Two sets of empirical studies were also completed. The first evaluated the cache and bus 

behavior of parallel programs running under write-invalidate protocols over a variety of block 

and cache sizes. The analysis determined the effect of coherency overhead on both cache miss 

ratio and bus utilization by focusing on the sharing component of these metrics. The sharing 

componen: was responsible for the parallel programs having substantially higher miss ratios and 

bus utilization than comparable uniprocessor programs. It increased proportionally (relative to 

the uniprocessor component) with both block and cache size, and for the larger cache 

configuration values determined both the magnitude and trend of the metrics. Miss ratios were 

2.2 to 4.7 times greater with increasing cache size for most of the traces, and 15 times ~ater in 

the most extreme case. Bus utilization figures were similarly higher, with figures ranging from 

30 to 70 percent of available bus cycles. Increasing block size either increased the number of 

invalidation misses or decreased them at a rate that was less than for uniprocessor misses. In 

the former case the increase was substantial enough to reverse the declining miss ratio trend that 

normally occurs with larger block sizes. Again. bus utilization followed suite. 

The second set of studies was a cross-protocol comparison. It first provided empirical evi­

dence of the performance loss caused by increasing the block size in write-invalidate protocols 

and the cache size in write-broadcast. It then measured the extent to which read broadcast 

improved write-invalidate performance and under what situations competitive snooping helped 

write-broadcast. The results indicated that read-broadcast reduced the number of invalidation 

misses (by 4 to 51 percent), but at a high cost in processor lockout from t.~e cache. The surpris­

ing net effect was an increase in total execution cycles of up to 3.6 percent. Competitive snoop­

ing benefited only those programs in which the pattern of references to shared data was one of 

sequential sharing. Both bus utilization and total execution time dropped moderately. For 
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programs characterized by fine-grain sharing, competitive snooping at times degraded perfor­

mance by causing a slight increase in bus utilization and total execution time. 

One result was central to all studies: the importance to good cache and bus performance of 

the pattern of memory references to write-shared data. When the pattern is one of sequential 

sharing, performance, measured by a wide variety of metrics, is better than when the sharing 

behavior is characterized by fine-grain sharing. 

The duality was evident in several ways. Modeling the pattern of memory references to 

shared data was the single most important factor in developing a model of coherency overhead 

that was accur;.:.e for both write-invalidate and write-broadcast protocols. The necessity to 

include a parameter that represented sharing behavior was noticed when the architecture­

independent form of the model could not be validated for the write-invalidate protocols. Here 

the si:?:e of the coherency block in the realistic simulations differed from that in the more 

abstract sharing analyses. The memory access pattern to the shared data within the coherency 

block dominated the effects of the sharing pattern intrinsic to the program. A savings in 

coherency overhead occurred when the memory access pattern exhibited sequential sharing; and 

additional coherency cycles resulted with fine-grain sharing. (Under write-broadcast the prob­

lem was not apparent, because the size of the coherency block matched the one-word unit of 

access in the architecture-independent model.) 

The pattern of memory references to shared data was depicted in the sharing model by a 

parameter for the size of the coherency unit. Simulations that produced- model predictions 

could then track shared memory reference behavior to addresses within the coherency unit as a 

whole, which more accurately mimics write-invalidate protocol behavior. Incorporating this 

single parameter into the otherwise architecture-independent model produced results that more 

accurately predicted coherency overhead in write-invalidate protocols. The improvements 

ranged from a factor of 4.8 to 52.7, depending on the trace. They brought the model's predic-
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tions of coherency overhead within 2 to 8 percent of architecturally detailed simulation values. 

Sharing behavior was also pivotal in the empirical studies of the cache and bus behavior 

of parallel programs. For the programs analyzed, the amount of sharing overhead and therefore 

the coherency cost in terms of miss ratios and bus utilization, depended on the intra-block 

memory reference pattern for shared data. Invalidation signals in programs with sequential 

sharing declined with increasing block size, producing a falling miss ratio; bus utilization also 

fell with increasing block size, and the proportion of sharing-related bus cycles to total bus 

cycles was less than for programs with fine-grain sharing. Programs that exhibited fine-grain 

sharing had the opposite behavior. Invalidation misses rose with increasing block size; and 

since they comprised the majority of total misses (a larger component than for programs with 

sequential sharing), their miss ratios rose. Bus utilization also followed suite, and quite sharply. 

The divergent memory reference behavior was also apparent with increasing cache size. 

Miss ratios and bus utilization of programs with sequential sharing were much more responsive 

to increases in cache size than those whose behavior was characterized by fine-grain sharing. 

For both memory reference patterns the metrics declined with cache size, but the decline was 

sharper for the better behaved programs. The proportion of sharing-related bus cycles to total 

bus cycles was greater with fine-grain than sequential sharing; their magnitude was responsible 

for the insensativity of bus utilization to changes in cache size for programs with intra­

coherency block contention. 

Sharing program behavior was important in the studies that compared write-broadcast and 

competitive snooping protocols. Write-broadcast protocols were designed to perform well 

when there was contention for shared data. Studies in this dissertation indicated that they met 

tJ1is goal. For all cache sizes studied (16K to 512K bytes), progran1s with fine-grain sharing 

issued fewer broadcasts than those with sequential sharing. However, whether the better broad­

cast performance resulted in lower bus utilization depended on the uniprocessor behavior (i.e., 
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uniprocessor bus traffic) of the programs. Therefore the lower coherency costs of fine-grain 

sharing did not always translate into better overall perfonnance. 

The competitive snooping protocol only benefited those programs with sequential sharing 

patterns. For these programs the invalidation feature reduced the number of broadcasts up to 70 

percent, several times more than for programs characterized by fine-grain sharing. The reduc­

tion in broadcasts resulted in lower bus utilization and total execution time. For programs 

characterized by fine-grain sharing, competitive snooping degraded performance, causing a 

slight increase in both bus utilization and total execution time. 

In summary, programs that exhibited sequential sharing produced less coherency overhead 

in multiple studies, for all metrics and across all block and cache sizes. The results clearly 

demonstrate the advisability of devising techniques to deliberately allocate shared data in such a 

way as to produce an inter-processor memory reference pattern characterized by sequential 

sharing. This dissertation has suggested two alternatives for shared data reorganization. The 

first involves the explicit programmer specification of data that is used by differem processors, 

and runtime support for its allocation in shared memory on cache block boundaries. The tech­

nique is a straightforward solution for reducing coherency bus traffic, but places the responsibil­

ity for optimal runtime memory usage of shared variables entirely on the programmer. The 

second approach relies on the automatic compiler detection and subsequent memory allocation 

of per-processor shared variables. The problem is difficult, because the compiler must analyze 

references to pointers rather than discrete variables. The technique would free the programmer 

from having to reorganize shared data, but at considerable software complexity. At this point 

no solutions have been found. 

The success of the memory reorganization approach may be hindered by constraints in the 

semantics of the underlying algorithm. For example, the algorithm may generate inter­

processor comention for data and the number of processors may be quite large. Allocating the 
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data to separate cache blocks would not eliminate multiple invalidations and invalidation 

misses. For these cases a different approach should be taken. One promising technique is to 

generate, again via the compiler, different coherency code, depending on the processor usage of 

the shared data. Invalidations would be issued when program behavior is one of sequential 

sharing, and broadcasts when it exhibits fine-grain sharing. Both compiler approaches are areas 

of future research. 


